BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 29047080)

  • 21. Activation of glucose-6-phosphate dehydrogenase promotes acute hypoxic pulmonary artery contraction.
    Gupte RS; Rawat DK; Chettimada S; Cioffi DL; Wolin MS; Gerthoffer WT; McMurtry IF; Gupte SA
    J Biol Chem; 2010 Jun; 285(25):19561-71. PubMed ID: 20363753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pluripotent hematopoietic stem cells augment α-adrenergic receptor-mediated contraction of pulmonary artery and contribute to the pathogenesis of pulmonary hypertension.
    Hashimoto R; Lanier GM; Dhagia V; Joshi SR; Jordan A; Waddell I; Tuder R; Stenmark KR; Wolin MS; McMurtry IF; Gupte SA
    Am J Physiol Lung Cell Mol Physiol; 2020 Feb; 318(2):L386-L401. PubMed ID: 31913656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism.
    Chen L; Zhang Z; Hoshino A; Zheng HD; Morley M; Arany Z; Rabinowitz JD
    Nat Metab; 2019 Mar; 1():404-415. PubMed ID: 31058257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic flux of the oxidative pentose phosphate pathway under low light conditions in Synechocystis sp. PCC 6803.
    Ueda K; Nakajima T; Yoshikawa K; Toya Y; Matsuda F; Shimizu H
    J Biosci Bioeng; 2018 Jul; 126(1):38-43. PubMed ID: 29499995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat.
    Díaz-Flores M; Ibáñez-Hernández MA; Galván RE; Gutiérrez M; Durán-Reyes G; Medina-Navarro R; Pascoe-Lira D; Ortega-Camarillo C; Vilar-Rojas C; Cruz M; Baiza-Gutman LA
    Life Sci; 2006 Apr; 78(22):2601-7. PubMed ID: 16325866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidant-redox regulation of pulmonary vascular responses to hypoxia and nitric oxide-cGMP signaling.
    Wolin MS; Gupte SA; Neo BH; Gao Q; Ahmad M
    Cardiol Rev; 2010; 18(2):89-93. PubMed ID: 20160535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The modulation of the oxidative phase of the pentose phosphate pathway in mouse liver.
    Velasco P; Sieiro AM; Ibarguren I; Ramos-Martínez JI; Barcia R
    Int J Biochem Cell Biol; 1995 Oct; 27(10):1015-9. PubMed ID: 7496990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger.
    R Poulsen B; Nøhr J; Douthwaite S; Hansen LV; Iversen JJ; Visser J; Ruijter GJ
    FEBS J; 2005 Mar; 272(6):1313-25. PubMed ID: 15752350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors.
    Olavarría K; Valdés D; Cabrera R
    FEBS J; 2012 Jul; 279(13):2296-309. PubMed ID: 22519976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TRAF6-Mediated SM22α K21 Ubiquitination Promotes G6PD Activation and NADPH Production, Contributing to GSH Homeostasis and VSMC Survival In Vitro and In Vivo.
    Dong LH; Li L; Song Y; Duan ZL; Sun SG; Lin YL; Miao SB; Yin YJ; Shu YN; Li H; Chen P; Zhao LL; Han M
    Circ Res; 2015 Sep; 117(8):684-94. PubMed ID: 26291555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of the pentose phosphate pathway in human astrocytes and gliomas.
    Loreck DJ; Galarraga J; Van der Feen J; Phang JM; Smith BH; Cummins CJ
    Metab Brain Dis; 1987 Mar; 2(1):31-46. PubMed ID: 3505333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803.
    Choi YN; Park JM
    Bioresour Technol; 2016 Aug; 213():54-57. PubMed ID: 26951740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of diatom glucose-6-phosphate dehydrogenase on lipogenic NADPH supply in green microalgae through plastidial oxidative pentose phosphate pathway.
    Xue J; Chen TT; Zheng JW; Balamurugan S; Cai JX; Liu YH; Yang WD; Liu JS; Li HY
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10803-10815. PubMed ID: 30349933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glucose 6-phosphate dehydrogenase and the kidney.
    Spencer NY; Stanton RC
    Curr Opin Nephrol Hypertens; 2017 Jan; 26(1):43-49. PubMed ID: 27755120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship of the oxidative pentose shunt pathway to lipid synthesis in Drosophila melanogaster.
    Geer BW; Lindel DL; Lindel DM
    Biochem Genet; 1979 Oct; 17(9-10):881-95. PubMed ID: 120194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucose-6-Phosphate Dehydrogenases: The Hidden Players of Plant Physiology.
    Jiang Z; Wang M; Nicolas M; Ogé L; Pérez-Garcia MD; Crespel L; Li G; Ding Y; Le Gourrierec J; Grappin P; Sakr S
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress.
    Ghosh AK; Sardar AH; Mandal A; Saini S; Abhishek K; Kumar A; Purkait B; Singh R; Das S; Mukhopadhyay R; Roy S; Das P
    FASEB J; 2015 May; 29(5):2081-98. PubMed ID: 25690656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heteroexpression and functional characterization of glucose 6-phosphate dehydrogenase from industrial
    Guo H; Han J; Wu J; Chen H
    J Microbiol Biotechnol; 2019 Apr; 29(4):577-586. PubMed ID: 30786701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming.
    D'Alessandro A; El Kasmi KC; Plecitá-Hlavatá L; Ježek P; Li M; Zhang H; Gupte SA; Stenmark KR
    Antioxid Redox Signal; 2018 Jan; 28(3):230-250. PubMed ID: 28637353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Salt-Inducible Kinase 3 Provides Sugar Tolerance by Regulating NADPH/NADP
    Teesalu M; Rovenko BM; Hietakangas V
    Curr Biol; 2017 Feb; 27(3):458-464. PubMed ID: 28132818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.