BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29047087)

  • 1. Effects of Hyperoxia on the Developing Airway and Pulmonary Vasculature.
    Pabelick CM; Thompson MA; Britt RD
    Adv Exp Med Biol; 2017; 967():179-194. PubMed ID: 29047087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progressive Vascular Functional and Structural Damage in a Bronchopulmonary Dysplasia Model in Preterm Rabbits Exposed to Hyperoxia.
    Jiménez J; Richter J; Nagatomo T; Salaets T; Quarck R; Wagennar A; Wang H; Vanoirbeek J; Deprest J; Toelen J
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27783043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic assessment of pulmonary hypertension using high-resolution echocardiography is feasible in neonatal mice with experimental bronchopulmonary dysplasia and pulmonary hypertension: a step toward preventing chronic obstructive pulmonary disease.
    Reynolds CL; Zhang S; Shrestha AK; Barrios R; Shivanna B
    Int J Chron Obstruct Pulmon Dis; 2016; 11():1597-605. PubMed ID: 27478373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermittent CPAP limits hyperoxia-induced lung damage in a rabbit model of bronchopulmonary dysplasia.
    Gie AG; Salaets T; Vignero J; Regin Y; Vanoirbeek J; Deprest J; Toelen J
    Am J Physiol Lung Cell Mol Physiol; 2020 May; 318(5):L976-L987. PubMed ID: 32186390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cumulative effects of neonatal hyperoxia on murine alveolar structure and function.
    Cox AM; Gao Y; Perl AT; Tepper RS; Ahlfeld SK
    Pediatr Pulmonol; 2017 May; 52(5):616-624. PubMed ID: 28186703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered small airways in aged mice following neonatal exposure to hyperoxic gas.
    O'Reilly M; Harding R; Sozo F
    Neonatology; 2014; 105(1):39-45. PubMed ID: 24281398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered vasoreactivity in neonatal rats with pulmonary hypertension associated with bronchopulmonary dysplasia: Implication of both eNOS phosphorylation and calcium signaling.
    Dumas de la Roque E; Smeralda G; Quignard JF; Freund-Michel V; Courtois A; Marthan R; Muller B; Guibert C; Dubois M
    PLoS One; 2017; 12(2):e0173044. PubMed ID: 28235094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of EC-SOD worsens alveolar and vascular development in a neonatal mouse model of bleomycin-induced bronchopulmonary dysplasia and pulmonary hypertension.
    Delaney C; Wright RH; Tang JR; Woods C; Villegas L; Sherlock L; Savani RC; Abman SH; Nozik-Grayck E
    Pediatr Res; 2015 Dec; 78(6):634-40. PubMed ID: 26322414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure.
    Velten M; Heyob KM; Rogers LK; Welty SE
    J Appl Physiol (1985); 2010 May; 108(5):1347-56. PubMed ID: 20223995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of β-catenin signaling improves alveolarization and reduces pulmonary hypertension in experimental bronchopulmonary dysplasia.
    Alapati D; Rong M; Chen S; Hehre D; Hummler SC; Wu S
    Am J Respir Cell Mol Biol; 2014 Jul; 51(1):104-13. PubMed ID: 24484510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxic stress exacerbates hyperoxia-induced lung injury in a neonatal mouse model of bronchopulmonary dysplasia.
    Ratner V; Slinko S; Utkina-Sosunova I; Starkov A; Polin RA; Ten VS
    Neonatology; 2009; 95(4):299-305. PubMed ID: 19052476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sildenafil improves alveolar growth and pulmonary hypertension in hyperoxia-induced lung injury.
    Ladha F; Bonnet S; Eaton F; Hashimoto K; Korbutt G; Thébaud B
    Am J Respir Crit Care Med; 2005 Sep; 172(6):750-6. PubMed ID: 15947285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-citrulline attenuates arrested alveolar growth and pulmonary hypertension in oxygen-induced lung injury in newborn rats.
    Vadivel A; Aschner JL; Rey-Parra GJ; Magarik J; Zeng H; Summar M; Eaton F; Thébaud B
    Pediatr Res; 2010 Dec; 68(6):519-25. PubMed ID: 20805789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neonatal hyperoxia causes pulmonary vascular disease and shortens life span in aging mice.
    Yee M; White RJ; Awad HA; Bates WA; McGrath-Morrow SA; O'Reilly MA
    Am J Pathol; 2011 Jun; 178(6):2601-10. PubMed ID: 21550015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia.
    Balasubramaniam V; Mervis CF; Maxey AM; Markham NE; Abman SH
    Am J Physiol Lung Cell Mol Physiol; 2007 May; 292(5):L1073-84. PubMed ID: 17209139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term effects of recurrent intermittent hypoxia and hyperoxia on respiratory system mechanics in neonatal mice.
    Dylag AM; Mayer CA; Raffay TM; Martin RJ; Jafri A; MacFarlane PM
    Pediatr Res; 2017 Apr; 81(4):565-571. PubMed ID: 27842056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Airway Remodeling and Hyperreactivity in a Model of Bronchopulmonary Dysplasia and Their Modulation by IL-1 Receptor Antagonist.
    Royce SG; Nold MF; Bui C; Donovan C; Lam M; Lamanna E; Rudloff I; Bourke JE; Nold-Petry CA
    Am J Respir Cell Mol Biol; 2016 Dec; 55(6):858-868. PubMed ID: 27482635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatocyte growth factor treatment improves alveolarization in a newborn murine model of bronchopulmonary dysplasia.
    Ohki Y; Mayuzumi H; Tokuyama K; Yoshizawa Y; Arakawa H; Mochizuki H; Morikawa A
    Neonatology; 2009; 95(4):332-8. PubMed ID: 19122464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic potential of soluble guanylate cyclase modulators in neonatal chronic lung disease.
    Wagenaar GT; Hiemstra PS; Gosens R
    Am J Physiol Lung Cell Mol Physiol; 2015 Nov; 309(10):L1037-40. PubMed ID: 26432873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization.
    Thébaud B; Ladha F; Michelakis ED; Sawicka M; Thurston G; Eaton F; Hashimoto K; Harry G; Haromy A; Korbutt G; Archer SL
    Circulation; 2005 Oct; 112(16):2477-86. PubMed ID: 16230500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.