These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 29047102)
1. Reactive Oxygen Species in COPD-Related Vascular Remodeling. Zuo L; Chuang CC; Clark AD; Garrison DE; Kuhlman JL; Sypert DC Adv Exp Med Biol; 2017; 967():399-411. PubMed ID: 29047102 [TBL] [Abstract][Full Text] [Related]
2. NOX4 expression and distal arteriolar remodeling correlate with pulmonary hypertension in COPD. Guo X; Fan Y; Cui J; Hao B; Zhu L; Sun X; He J; Yang J; Dong J; Wang Y; Liu X; Chen J BMC Pulm Med; 2018 Jul; 18(1):111. PubMed ID: 29986678 [TBL] [Abstract][Full Text] [Related]
3. Oxidative stress and free radicals in COPD--implications and relevance for treatment. Domej W; Oettl K; Renner W Int J Chron Obstruct Pulmon Dis; 2014; 9():1207-24. PubMed ID: 25378921 [TBL] [Abstract][Full Text] [Related]
4. Reactive Oxygen Species-Dependent Calpain Activation Contributes to Airway and Pulmonary Vascular Remodeling in Chronic Obstructive Pulmonary Disease. Zhu J; Kovacs L; Han W; Liu G; Huo Y; Lucas R; Fulton D; Greer PA; Su Y Antioxid Redox Signal; 2019 Oct; 31(12):804-818. PubMed ID: 31088299 [No Abstract] [Full Text] [Related]
5. Phenotypic assessment of pulmonary hypertension using high-resolution echocardiography is feasible in neonatal mice with experimental bronchopulmonary dysplasia and pulmonary hypertension: a step toward preventing chronic obstructive pulmonary disease. Reynolds CL; Zhang S; Shrestha AK; Barrios R; Shivanna B Int J Chron Obstruct Pulmon Dis; 2016; 11():1597-605. PubMed ID: 27478373 [TBL] [Abstract][Full Text] [Related]
6. [Expression of nicotinamide adenine dinucleotide phosphate-reduced oxidase-4/reactive oxygen species and cystathionine-γ-lyase/hydrogen sulfide in patients with chronic obstructive pulmonary disease-related pulmonary hypertension]. Yuan XM; Zhuan B; Li P; Zhao X; Wang T; Yang Z Zhonghua Nei Ke Za Zhi; 2019 Oct; 58(10):770-776. PubMed ID: 31594176 [No Abstract] [Full Text] [Related]
7. Altered Redox Balance in the Development of Chronic Hypoxia-induced Pulmonary Hypertension. Jernigan NL; Resta TC; Gonzalez Bosc LV Adv Exp Med Biol; 2017; 967():83-103. PubMed ID: 29047083 [TBL] [Abstract][Full Text] [Related]
8. Characterization of pulmonary vascular remodeling and MicroRNA-126-targets in COPD-pulmonary hypertension. Goel K; Egersdorf N; Gill A; Cao D; Collum SD; Jyothula SS; Huang HJ; Sauler M; Lee PJ; Majka S; Karmouty-Quintana H; Petrache I Respir Res; 2022 Dec; 23(1):349. PubMed ID: 36522710 [TBL] [Abstract][Full Text] [Related]
10. CD30 Is Highly Expressed in Chronic Obstructive Pulmonary Disease and Induces the Pulmonary Vascular Remodeling. Luo L; Liu Y; Chen D; Chen F; Lan HB; Xie C Biomed Res Int; 2018; 2018():3261436. PubMed ID: 29984229 [TBL] [Abstract][Full Text] [Related]
11. Reactive oxygen species as therapeutic targets in pulmonary hypertension. Freund-Michel V; Guibert C; Dubois M; Courtois A; Marthan R; Savineau JP; Muller B Ther Adv Respir Dis; 2013 Jun; 7(3):175-200. PubMed ID: 23328248 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial alterations during oxidative stress in chronic obstructive pulmonary disease. Jiang Y; Wang X; Hu D Int J Chron Obstruct Pulmon Dis; 2017; 12():1153-1162. PubMed ID: 28458526 [TBL] [Abstract][Full Text] [Related]
13. Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy. Kirkham P; Rahman I Pharmacol Ther; 2006 Aug; 111(2):476-94. PubMed ID: 16458359 [TBL] [Abstract][Full Text] [Related]
14. Oxidative stress and gene transcription in asthma and chronic obstructive pulmonary disease: antioxidant therapeutic targets. Rahman I Curr Drug Targets Inflamm Allergy; 2002 Sep; 1(3):291-315. PubMed ID: 14561194 [TBL] [Abstract][Full Text] [Related]
15. Reoxygenation Reverses Hypoxic Pulmonary Arterial Remodeling by Inducing Smooth Muscle Cell Apoptosis via Reactive Oxygen Species-Mediated Mitochondrial Dysfunction. Chen J; Wang YX; Dong MQ; Zhang B; Luo Y; Niu W; Li ZC J Am Heart Assoc; 2017 Jun; 6(6):. PubMed ID: 28645933 [TBL] [Abstract][Full Text] [Related]
16. Novel aspects of pathogenesis and regeneration mechanisms in COPD. Bagdonas E; Raudoniute J; Bruzauskaite I; Aldonyte R Int J Chron Obstruct Pulmon Dis; 2015; 10():995-1013. PubMed ID: 26082624 [TBL] [Abstract][Full Text] [Related]
17. Pulmonary vasculature in COPD: The silent component. Blanco I; Piccari L; Barberà JA Respirology; 2016 Aug; 21(6):984-94. PubMed ID: 27028849 [TBL] [Abstract][Full Text] [Related]
18. Adrenomedullin can protect against pulmonary vascular remodeling induced by hypoxia. Matsui H; Shimosawa T; Itakura K; Guanqun X; Ando K; Fujita T Circulation; 2004 May; 109(18):2246-51. PubMed ID: 15096451 [TBL] [Abstract][Full Text] [Related]
19. Redox-Dependent Calpain Signaling in Airway and Pulmonary Vascular Remodeling in COPD. Kovacs L; Su Y Adv Exp Med Biol; 2017; 967():139-160. PubMed ID: 29047085 [TBL] [Abstract][Full Text] [Related]
20. Production of reactive persulfide species in chronic obstructive pulmonary disease. Numakura T; Sugiura H; Akaike T; Ida T; Fujii S; Koarai A; Yamada M; Onodera K; Hashimoto Y; Tanaka R; Sato K; Shishikura Y; Hirano T; Yanagisawa S; Fujino N; Okazaki T; Tamada T; Hoshikawa Y; Okada Y; Ichinose M Thorax; 2017 Dec; 72(12):1074-1083. PubMed ID: 28724639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]