These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 29047272)

  • 41. ZnSe and CdS Co-Sensitized TiO
    Gunasekaran A; Sadhasivam S; Anbarasan N; Jeganathan K
    Chempluschem; 2022 Nov; 87(11):e202200304. PubMed ID: 36414394
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting.
    Yang JS; Liao WP; Wu JJ
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7425-31. PubMed ID: 23844887
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SnS
    Lin J; Liu Y; Liu Y; Huang C; Liu W; Mi X; Fan D; Fan F; Lu H; Chen X
    ChemSusChem; 2019 Mar; 12(5):961-967. PubMed ID: 30716210
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting.
    Wang M; Pyeon M; Gönüllü Y; Kaouk A; Shen S; Guo L; Mathur S
    Nanoscale; 2015 Jun; 7(22):10094-100. PubMed ID: 25980730
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-Dimensional WO
    Wang Y; Tian W; Chen L; Cao F; Guo J; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New Insights into the Electron-Collection Efficiency Improvement of CdS-Sensitized TiO
    Chen YL; Chen YH; Chen JW; Cao F; Li L; Luo ZM; Leu IC; Pu YC
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8126-8137. PubMed ID: 30726054
    [TBL] [Abstract][Full Text] [Related]  

  • 47. TiO
    Pi Y; Liu B; Li Z; Zhu Y; Li Y; Zhang F; Zhang G; Peng W; Fan X
    J Colloid Interface Sci; 2019 Jun; 545():282-288. PubMed ID: 30897424
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly sensitive photoelectrochemical sensing of bisphenol A based on zinc phthalocyanine/TiO
    Fan Z; Fan L; Shuang S; Dong C
    Talanta; 2018 Nov; 189():16-23. PubMed ID: 30086901
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells.
    Qiu J; Guo M; Wang X
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2358-67. PubMed ID: 21675757
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures.
    Cao F; Xiong J; Wu F; Liu Q; Shi Z; Yu Y; Wang X; Li L
    ACS Appl Mater Interfaces; 2016 May; 8(19):12239-45. PubMed ID: 27136708
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel phosphorus doped carbon nitride modified TiO₂ nanotube arrays with improved photoelectrochemical performance.
    Su J; Geng P; Li X; Zhao Q; Quan X; Chen G
    Nanoscale; 2015 Oct; 7(39):16282-9. PubMed ID: 26376767
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hierarchical TiO2-CuInS2 core-shell nanoarrays for photoelectrochemical water splitting.
    Guo K; Liu Z; Han J; Liu Z; Li Y; Wang B; Cui T; Zhou C
    Phys Chem Chem Phys; 2014 Aug; 16(30):16204-13. PubMed ID: 24969515
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting.
    Wu M; Chen WJ; Shen YH; Huang FZ; Li CH; Li SK
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15052-60. PubMed ID: 25144940
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hierarchical assembly of TiO2-SrTiO3 heterostructures on conductive SnO2 backbone nanobelts for enhanced photoelectrochemical and photocatalytic performance.
    Park S; Kim S; Kim HJ; Lee CW; Song HJ; Seo SW; Park HK; Kim DW; Hong KS
    J Hazard Mater; 2014 Jun; 275():10-8. PubMed ID: 24830569
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbon dot loading and TiO₂ nanorod length dependence of photoelectrochemical properties in carbon dot/TiO₂ nanorod array nanocomposites.
    Bian J; Huang C; Wang L; Hung T; Daoud WA; Zhang R
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4883-90. PubMed ID: 24601482
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrogenated TiO
    Liang Z; Hou H; Fang Z; Gao F; Wang L; Chen D; Yang W
    ACS Appl Mater Interfaces; 2019 May; 11(21):19167-19175. PubMed ID: 31058485
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasmon-Sensitized Graphene/TiO
    Boppella R; Kochuveedu ST; Kim H; Jeong MJ; Marques Mota F; Park JH; Kim DH
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7075-7083. PubMed ID: 28170225
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ni/Si-Codoped TiO
    Li T; Ding D
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817973
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced photoelectrochemical performance of bridged ZnO nanorod arrays grown on V-grooved structure.
    Wei Y; Ke L; Leong ES; Liu H; Liew LL; Teng JH; Du H; Sun XW
    Nanotechnology; 2012 Sep; 23(36):365704. PubMed ID: 22910379
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surface plasmon-driven photoelectrochemical water splitting of a Ag/TiO
    Peerakiatkhajohn P; Yun JH; Butburee T; Nisspa W; Thaweesak S
    RSC Adv; 2022 Jan; 12(5):2652-2661. PubMed ID: 35425299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.