BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 29047324)

  • 21. Optimization of poly (lactic-co-glycolic acid)-bioactive glass composite scaffold for bone tissue engineering using stem cells from human exfoliated deciduous teeth.
    Kunwong N; Tangjit N; Rattanapinyopituk K; Dechkunakorn S; Anuwongnukroh N; Arayapisit T; Sritanaudomchai H
    Arch Oral Biol; 2021 Mar; 123():105041. PubMed ID: 33454420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Collagen-I and fibronectin modified three-dimensional electrospun PLGA scaffolds for long-term in vitro maintenance of functional hepatocytes.
    Das P; DiVito MD; Wertheim JA; Tan LP
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110723. PubMed ID: 32279797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Experimental study on tissue engineered cartilage complex three-dimensional nano-scaffold with collagen type II and hyaluronic acid in vitro].
    Yang Z; Chen Z; Liu K; Bai Y; Jiang T; Feng D; Feng G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Oct; 27(10):1240-5. PubMed ID: 24397139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges.
    Lu H; Ko YG; Kawazoe N; Chen G
    Biomed Mater; 2011 Aug; 6(4):045011. PubMed ID: 21747151
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds.
    Park GE; Pattison MA; Park K; Webster TJ
    Biomaterials; 2005 Jun; 26(16):3075-82. PubMed ID: 15603802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold.
    Baek CH; Ko YJ
    Laryngoscope; 2006 Oct; 116(10):1829-34. PubMed ID: 17016212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation.
    Jung Y; Kim SH; Kim SH; Kim YH; Xie J; Matsuda T; Min BG
    J Biomater Sci Polym Ed; 2008; 19(1):61-74. PubMed ID: 18177554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3-dimensional composite scaffolds consisting of apatite-PLGA-atelocollagen for bone tissue engineering.
    Takechi M; Ohta K; Ninomiya Y; Tada M; Minami M; Takamoto M; Ohta A; Nakagawa T; Fukui A; Miyamoto Y; Kamata N
    Dent Mater J; 2012; 31(3):465-71. PubMed ID: 22673459
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accelerating bone regeneration using poly(lactic-co-glycolic acid)/hydroxyapatite scaffolds containing duck feet-derived collagen.
    Song JE; Lee DH; Khang G; Yoon SJ
    Int J Biol Macromol; 2023 Feb; 229():486-495. PubMed ID: 36587641
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application.
    Park JS; Woo DG; Sun BK; Chung HM; Im SJ; Choi YM; Park K; Huh KM; Park KH
    J Control Release; 2007 Dec; 124(1-2):51-9. PubMed ID: 17904679
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and Properties of Bamboo Fiber/Nano-hydroxyapatite/Poly(lactic-co-glycolic) Composite Scaffold for Bone Tissue Engineering.
    Jiang L; Li Y; Xiong C; Su S; Ding H
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4890-4897. PubMed ID: 28084718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [PREPARATION AND PERFORMANCE RESEARCH OF SILK FIBROIN COLLAGEN BLEND SCAFFOLD].
    Sun K; Nian Z; Xu C; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Jul; 28(7):903-8. PubMed ID: 26462359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of a scaffold fabricated thermally from acetylated PLGA on the formation of engineered cartilage.
    Kang SW; Lee SJ; Kim JS; Choi EH; Cha BH; Shim JH; Cho DW; Lee SH
    Macromol Biosci; 2011 Feb; 11(2):267-74. PubMed ID: 21077228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering.
    Yoo HS; Lee EA; Yoon JJ; Park TG
    Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold.
    Sha'ban M; Yoon SJ; Ko YK; Ha HJ; Kim SH; So JW; Idrus RB; Khang G
    J Biomater Sci Polym Ed; 2008; 19(9):1219-37. PubMed ID: 18727862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pore size effect of collagen scaffolds on cartilage regeneration.
    Zhang Q; Lu H; Kawazoe N; Chen G
    Acta Biomater; 2014 May; 10(5):2005-13. PubMed ID: 24384122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cartilage tissue engineering using funnel-like collagen sponges prepared with embossing ice particulate templates.
    Lu H; Ko YG; Kawazoe N; Chen G
    Biomaterials; 2010 Aug; 31(22):5825-35. PubMed ID: 20452015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction of bionic tissue engineering cartilage scaffold based on three-dimensional printing and oriented frozen technology.
    Xu Y; Guo X; Yang S; Li L; Zhang P; Sun W; Liu C; Mi S
    J Biomed Mater Res A; 2018 Jun; 106(6):1664-1676. PubMed ID: 29460433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing the function of PLGA-collagen scaffold by incorporating TGF-β1-loaded PLGA-PEG-PLGA nanoparticles for cartilage tissue engineering using human dental pulp stem cells.
    Ghandforoushan P; Hanaee J; Aghazadeh Z; Samiei M; Navali AM; Khatibi A; Davaran S
    Drug Deliv Transl Res; 2022 Dec; 12(12):2960-2978. PubMed ID: 35650332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.