BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

735 related articles for article (PubMed ID: 29047334)

  • 1. A Support Vector Machine based method to distinguish long non-coding RNAs from protein coding transcripts.
    Schneider HW; Raiol T; Brigido MM; Walter MEMT; Stadler PF
    BMC Genomics; 2017 Oct; 18(1):804. PubMed ID: 29047334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. lncRScan-SVM: A Tool for Predicting Long Non-Coding RNAs Using Support Vector Machine.
    Sun L; Liu H; Zhang L; Meng J
    PLoS One; 2015; 10(10):e0139654. PubMed ID: 26437338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme.
    Li A; Zhang J; Zhou Z
    BMC Bioinformatics; 2014 Sep; 15(1):311. PubMed ID: 25239089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CPPred: coding potential prediction based on the global description of RNA sequence.
    Tong X; Liu S
    Nucleic Acids Res; 2019 May; 47(8):e43. PubMed ID: 30753596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA Coding Potential Prediction Using Alignment-Free Logistic Regression Model.
    Li Y; Wang L
    Methods Mol Biol; 2021; 2254():27-39. PubMed ID: 33326068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational identification of human long intergenic non-coding RNAs using a GA-SVM algorithm.
    Wang Y; Li Y; Wang Q; Lv Y; Wang S; Chen X; Yu X; Jiang W; Li X
    Gene; 2014 Jan; 533(1):94-9. PubMed ID: 24120395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of plant lncRNA by ensemble machine learning classifiers.
    Simopoulos CMA; Weretilnyk EA; Golding GB
    BMC Genomics; 2018 May; 19(1):316. PubMed ID: 29720103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome.
    Wucher V; Legeai F; Hédan B; Rizk G; Lagoutte L; Leeb T; Jagannathan V; Cadieu E; David A; Lohi H; Cirera S; Fredholm M; Botherel N; Leegwater PAJ; Le Béguec C; Fieten H; Johnson J; Alföldi J; André C; Lindblad-Toh K; Hitte C; Derrien T
    Nucleic Acids Res; 2017 May; 45(8):e57. PubMed ID: 28053114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating RNA-seq and ChIP-seq data to characterize long non-coding RNAs in Drosophila melanogaster.
    Chen MJ; Chen LK; Lai YS; Lin YY; Wu DC; Tung YA; Liu KY; Shih HT; Chen YJ; Lin YL; Ma LT; Huang JL; Wu PC; Hong MY; Chu FH; Wu JT; Li WH; Chen CY
    BMC Genomics; 2016 Mar; 17():220. PubMed ID: 26969372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting functional long non-coding RNAs validated by low throughput experiments.
    Zhou B; Yang Y; Zhan J; Dou X; Wang J; Zhou Y
    RNA Biol; 2019 Nov; 16(11):1555-1564. PubMed ID: 31345106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. lncRNA-MFDL: identification of human long non-coding RNAs by fusing multiple features and using deep learning.
    Fan XN; Zhang SW
    Mol Biosyst; 2015 Mar; 11(3):892-7. PubMed ID: 25588719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transductive learning as an alternative to translation initiation site identification.
    Nunes Pinto CL; Nobre CN; Zárate LE
    BMC Bioinformatics; 2017 Feb; 18(1):81. PubMed ID: 28152994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of novel long non-coding RNAs based on RNA-Seq data of mouse Klf1 knockout study.
    Sun L; Zhang Z; Bailey TL; Perkins AC; Tallack MR; Xu Z; Liu H
    BMC Bioinformatics; 2012 Dec; 13():331. PubMed ID: 23237380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discriminating cirRNAs from other lncRNAs using a hierarchical extreme learning machine (H-ELM) algorithm with feature selection.
    Chen L; Zhang YH; Huang G; Pan X; Wang S; Huang T; Cai YD
    Mol Genet Genomics; 2018 Feb; 293(1):137-149. PubMed ID: 28913654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRlncRC: a machine learning-based method for cancer-related long noncoding RNA identification using integrated features.
    Zhang X; Wang J; Li J; Chen W; Liu C
    BMC Med Genomics; 2018 Dec; 11(Suppl 6):120. PubMed ID: 30598114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of protein-coding and long non-coding transcripts based on RNA sequence features.
    Volkova OA; Kondrakhin YV; Kashapov TA; Sharipov RN
    J Bioinform Comput Biol; 2018 Apr; 16(2):1840013. PubMed ID: 29739305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of long non-coding transcripts with feature selection: a comparative study.
    Ventola GM; Noviello TM; D'Aniello S; Spagnuolo A; Ceccarelli M; Cerulo L
    BMC Bioinformatics; 2017 Mar; 18(1):187. PubMed ID: 28335739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The stacking strategy-based hybrid framework for identifying non-coding RNAs.
    Wang X; Yang Y; Liu J; Wang G
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33693454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning-Based Annotation of Long Noncoding RNAs Using PLncPRO.
    Khemka NK; Singh U; Dwivedi AK; Jain M
    Methods Mol Biol; 2020; 2107():253-260. PubMed ID: 31893451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PLIT: An alignment-free computational tool for identification of long non-coding RNAs in plant transcriptomic datasets.
    Deshpande S; Shuttleworth J; Yang J; Taramonli S; England M
    Comput Biol Med; 2019 Feb; 105():169-181. PubMed ID: 30665012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.