These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29047382)

  • 1. A novel and fully automated mammographic texture analysis for risk prediction: results from two case-control studies.
    Wang C; Brentnall AR; Cuzick J; Harkness EF; Evans DG; Astley S
    Breast Cancer Res; 2017 Oct; 19(1):114. PubMed ID: 29047382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the prediction performance for breast cancer risk based on volumetric mammographic density at different thresholds.
    Wang C; Brentnall AR; Cuzick J; Harkness EF; Evans DG; Astley S
    Breast Cancer Res; 2018 Jun; 20(1):49. PubMed ID: 29884207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method of determining breast cancer risk using parenchymal textural analysis of mammography images on an Asian cohort.
    Tan M; Mariapun S; Yip CH; Ng KH; Teo SH
    Phys Med Biol; 2019 Jan; 64(3):035016. PubMed ID: 30577031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of LIBRA Software for Fully Automated Mammographic Density Assessment in Breast Cancer Risk Prediction.
    Gastounioti A; Kasi CD; Scott CG; Brandt KR; Jensen MR; Hruska CB; Wu FF; Norman AD; Conant EF; Winham SJ; Kerlikowske K; Kontos D; Vachon CM
    Radiology; 2020 Jul; 296(1):24-31. PubMed ID: 32396041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global parenchymal texture features based on histograms of oriented gradients improve cancer development risk estimation from healthy breasts.
    Pérez-Benito FJ; Signol F; Pérez-Cortés JC; Pollán M; Pérez-Gómez B; Salas-Trejo D; Casals M; Martínez I; LLobet R
    Comput Methods Programs Biomed; 2019 Aug; 177():123-132. PubMed ID: 31319940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The combined effect of mammographic texture and density on breast cancer risk: a cohort study.
    Wanders JOP; van Gils CH; Karssemeijer N; Holland K; Kallenberg M; Peeters PHM; Nielsen M; Lillholm M
    Breast Cancer Res; 2018 May; 20(1):36. PubMed ID: 29720220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Area and volumetric density estimation in processed full-field digital mammograms for risk assessment of breast cancer.
    Cheddad A; Czene K; Eriksson M; Li J; Easton D; Hall P; Humphreys K
    PLoS One; 2014; 9(10):e110690. PubMed ID: 25329322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammographic texture and risk of breast cancer by tumor type and estrogen receptor status.
    Malkov S; Shepherd JA; Scott CG; Tamimi RM; Ma L; Bertrand KA; Couch F; Jensen MR; Mahmoudzadeh AP; Fan B; Norman A; Brandt KR; Pankratz VS; Vachon CM; Kerlikowske K
    Breast Cancer Res; 2016 Dec; 18(1):122. PubMed ID: 27923387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammographic texture resemblance generalizes as an independent risk factor for breast cancer.
    Nielsen M; Vachon CM; Scott CG; Chernoff K; Karemore G; Karssemeijer N; Lillholm M; Karsdal MA
    Breast Cancer Res; 2014 Apr; 16(2):R37. PubMed ID: 24713478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of percent density from raw and processed full-field digital mammography data.
    Vachon CM; Fowler EE; Tiffenberg G; Scott CG; Pankratz VS; Sellers TA; Heine JJ
    Breast Cancer Res; 2013 Jan; 15(1):R1. PubMed ID: 23289950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting interval and screen-detected breast cancers from mammographic density defined by different brightness thresholds.
    Nguyen TL; Aung YK; Li S; Trinh NH; Evans CF; Baglietto L; Krishnan K; Dite GS; Stone J; English DR; Song YM; Sung J; Jenkins MA; Southey MC; Giles GG; Hopper JL
    Breast Cancer Res; 2018 Dec; 20(1):152. PubMed ID: 30545395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adjusting for BMI in analyses of volumetric mammographic density and breast cancer risk.
    Hudson S; Vik Hjerkind K; Vinnicombe S; Allen S; Trewin C; Ursin G; Dos-Santos-Silva I; De Stavola BL
    Breast Cancer Res; 2018 Dec; 20(1):156. PubMed ID: 30594212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Texture features from mammographic images and risk of breast cancer.
    Manduca A; Carston MJ; Heine JJ; Scott CG; Pankratz VS; Brandt KR; Sellers TA; Vachon CM; Cerhan JR
    Cancer Epidemiol Biomarkers Prev; 2009 Mar; 18(3):837-45. PubMed ID: 19258482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment.
    Zheng Y; Keller BM; Ray S; Wang Y; Conant EF; Gee JC; Kontos D
    Med Phys; 2015 Jul; 42(7):4149-60. PubMed ID: 26133615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammographic density and structural features can individually and jointly contribute to breast cancer risk assessment in mammography screening: a case-control study.
    Winkel RR; von Euler-Chelpin M; Nielsen M; Petersen K; Lillholm M; Nielsen MB; Lynge E; Uldall WY; Vejborg I
    BMC Cancer; 2016 Jul; 16():414. PubMed ID: 27387546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation.
    Keller BM; Nathan DL; Wang Y; Zheng Y; Gee JC; Conant EF; Kontos D
    Med Phys; 2012 Aug; 39(8):4903-17. PubMed ID: 22894417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of five methods of measuring mammographic density: a case-control study.
    Astley SM; Harkness EF; Sergeant JC; Warwick J; Stavrinos P; Warren R; Wilson M; Beetles U; Gadde S; Lim Y; Jain A; Bundred S; Barr N; Reece V; Brentnall AR; Cuzick J; Howell T; Evans DG
    Breast Cancer Res; 2018 Feb; 20(1):10. PubMed ID: 29402289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital mammographic density and breast cancer risk: a case-control study of six alternative density assessment methods.
    Eng A; Gallant Z; Shepherd J; McCormack V; Li J; Dowsett M; Vinnicombe S; Allen S; dos-Santos-Silva I
    Breast Cancer Res; 2014 Sep; 16(5):439. PubMed ID: 25239205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Case-control study of mammographic density and breast cancer risk using processed digital mammograms.
    Habel LA; Lipson JA; Achacoso N; Rothstein JH; Yaffe MJ; Liang RY; Acton L; McGuire V; Whittemore AS; Rubin DL; Sieh W
    Breast Cancer Res; 2016 May; 18(1):53. PubMed ID: 27209070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breast Cancer Risk and Mammographic Density Assessed with Semiautomated and Fully Automated Methods and BI-RADS.
    Jeffers AM; Sieh W; Lipson JA; Rothstein JH; McGuire V; Whittemore AS; Rubin DL
    Radiology; 2017 Feb; 282(2):348-355. PubMed ID: 27598536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.