These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29047548)

  • 1. Characterization and control of the electro-optic phase dispersion in lithium niobate modulators for wide spectral band interferometry applications in the mid-infrared.
    Heidmann S; Ulliac G; Courjal N; Martin G
    Appl Opt; 2017 May; 56(14):4153-4157. PubMed ID: 29047548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double polarization active Y junctions in the L band, based on Ti:LiNbO3 lithium niobate waveguides: polarization and contrast performances.
    Heidmann S; Courjal N; Martin G
    Opt Lett; 2012 Aug; 37(16):3318-20. PubMed ID: 23381243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro-optic beam deflection based on a lithium niobate waveguide with microstructured serrated electrodes.
    Wang Y; Zhou S; He D; Hu Y; Chen H; Liang W; Yu J; Guan H; Luo Y; Zhang J; Chen Z; Lu H
    Opt Lett; 2016 Oct; 41(20):4739-4742. PubMed ID: 28005881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss compensation of an ultra-wideband electro-optic modulator in heterogeneous silicon/erbium-doped lithium niobate.
    Wang J; Xiong N; Zou W
    Opt Lett; 2023 Jul; 48(13):3399-3402. PubMed ID: 37390140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact MZI modulators on thin film Z-cut lithium niobate.
    Hassanien AE; Ghoname AO; Chow E; Goddard LL; Gong S
    Opt Express; 2022 Jan; 30(3):4543-4552. PubMed ID: 35209688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple-wavelength Nd-laser system by cascaded electro-optic periodically poled lithium niobate Bragg modulator.
    Lin ST; Hsieh CS
    Opt Express; 2012 Dec; 20(28):29659-64. PubMed ID: 23388793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryogenic electro-optic polarisation conversion in titanium in-diffused lithium niobate waveguides.
    Thiele F; Vom Bruch F; Quiring V; Ricken R; Herrmann H; Eigner C; Silberhorn C; Bartley TJ
    Opt Express; 2020 Sep; 28(20):28961-28968. PubMed ID: 33114804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An infrared integrated optic astronomical beam combiner for stellar interferometry at 3-4 microm.
    Hsiao HK; Winick KA; Monnier JD; Berger JP
    Opt Express; 2009 Oct; 17(21):18489-500. PubMed ID: 20372579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mid-infrared frequency combs at 10  GHz.
    Kowligy AS; Carlson DR; Hickstein DD; Timmers H; Lind AJ; Schunemann PG; Papp SB; Diddams SA
    Opt Lett; 2020 Jul; 45(13):3677-3680. PubMed ID: 32630928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 12.5 pm/V hybrid silicon and lithium niobate optical microring resonator with integrated electrodes.
    Chen L; Wood MG; Reano RM
    Opt Express; 2013 Nov; 21(22):27003-10. PubMed ID: 24216923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon.
    Rao A; Patil A; Chiles J; Malinowski M; Novak S; Richardson K; Rabiei P; Fathpour S
    Opt Express; 2015 Aug; 23(17):22746-52. PubMed ID: 26368243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electro-optic high-speed optical beam shifting based on a lithium niobate tapered waveguide.
    Shang J; Chen H; Sui Z; Lin Q; Luo K; Yu L; Qiu W; Guan H; Chen Z; Lu H
    Opt Express; 2022 Apr; 30(9):14530-14537. PubMed ID: 35473193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanophotonic lithium niobate electro-optic modulators.
    Wang C; Zhang M; Stern B; Lipson M; Lončar M
    Opt Express; 2018 Jan; 26(2):1547-1555. PubMed ID: 29402028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelength dispersion measurement of electro-optic coefficients in the range of 520 to 930 nm in rubidium titanyl phosphate using spectral interferometry.
    Gobert O; Fedorov N; Mennerat G; Lupinski D; Guillaumet D; Perdrix M; Bourgeade A; Comte M
    Appl Opt; 2012 Feb; 51(5):594-9. PubMed ID: 22330291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.
    Li J; Lu DF; Qi ZM
    Appl Spectrosc; 2015 Sep; 69(9):1112-7. PubMed ID: 26414526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly coherent mid-IR supercontinuum by self-defocusing solitons in lithium niobate waveguides with all-normal dispersion.
    Guo H; Zhou B; Zeng X; Bache M
    Opt Express; 2014 May; 22(10):12211-25. PubMed ID: 24921341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems.
    Tan K; Shao J; Sun J; Wang J
    Opt Express; 2012 Jan; 20(2):1184-201. PubMed ID: 22274463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison between two heterodyne light sources using different electro-optic modulators for optical temperature measurements at visible wavelengths.
    Twu RC; Lee YH; Hou HY
    Sensors (Basel); 2010; 10(11):9609-19. PubMed ID: 22163429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-µm wavelength.
    Pan B; Hu J; Huang Y; Song L; Wang J; Chen P; Yu Z; Liu L; Dai D
    Opt Express; 2021 Jun; 29(12):17710-17717. PubMed ID: 34154047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings.
    Chen L; Reano RM
    Opt Express; 2012 Feb; 20(4):4032-8. PubMed ID: 22418161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.