These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 29047560)

  • 1. Optical function of the finite-thickness corrugated pellicle of euglenoids.
    Inchaussandague ME; Skigin DC; Dolinko AE
    Appl Opt; 2017 Jun; 56(18):5112-5120. PubMed ID: 29047560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural alterations in Phacus brachykentron (Euglenophyta) due to excess of organic matter in the culture medium.
    Nannavecchia P; Tolivia A; Conforti V
    Ecotoxicol Environ Saf; 2014 Mar; 101():36-41. PubMed ID: 24507124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructure of the pellicle of Euglena gracilis.
    Vismara R; Barsanti L; Lupetti P; Passarelli V; Mercati D; Dallai R; Gualtieri P
    Tissue Cell; 2000 Dec; 32(6):451-6. PubMed ID: 11197227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin of photoactivated adenylyl cyclase (PAC), the Euglena blue-light receptor: phylogenetic analysis of orthologues of PAC subunits from several euglenoids and trypanosome-type adenylyl cyclases from Euglena gracilis.
    Koumura Y; Suzuki T; Yoshikawa S; Watanabe M; Iseki M
    Photochem Photobiol Sci; 2004 Jun; 3(6):580-6. PubMed ID: 15170488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative morphology of the euglenid pellicle. I. Patterns of strips and pores.
    Leander BS; Farmer MA
    J Eukaryot Microbiol; 2000; 47(5):469-79. PubMed ID: 11001144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for the morphogenesis of strip reduction patterns in phototrophic euglenids: evidence for heterochrony in pellicle evolution.
    Esson HJ; Leander BS
    Evol Dev; 2006; 8(4):378-88. PubMed ID: 16805902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative morphology of the euglenid pellicle. II. Diversity of strip substructure.
    Leander BS; Farmer MA
    J Eukaryot Microbiol; 2001; 48(2):202-17. PubMed ID: 12095109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triosephosphate isomerase genes in two trophic modes of euglenoids (euglenophyceae) and their phylogenetic analysis.
    Sun GL; Shen W; Wen JF
    J Eukaryot Microbiol; 2008; 55(3):170-7. PubMed ID: 18460154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NOVEL PELLICLE SURFACE PATTERNS ON EUGLENA OBTUSA (EUGLENOPHYTA) FROM THE MARINE BENTHIC ENVIRONMENT: IMPLICATIONS FOR PELLICLE DEVELOPMENT AND EVOLUTION(1).
    Esson HJ; Leander BS
    J Phycol; 2008 Feb; 44(1):132-41. PubMed ID: 27041050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pellicle complex of Euglena gracilis: characterization by disruptive treatments.
    Silverman H; Hikida RS
    Protoplasma; 1976; 87(1-3):237-52. PubMed ID: 817368
    [No Abstract]   [Full Text] [Related]  

  • 11. Evolution of the chloroplast genome in photosynthetic euglenoids: a comparison of Eutreptia viridis and Euglena gracilis (Euglenophyta).
    Wiegert KE; Bennett MS; Triemer RE
    Protist; 2012 Nov; 163(6):832-43. PubMed ID: 22364772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconciling the bizarre inheritance of microtubules in complex (euglenid) microeukaryotes.
    Yubuki N; Leander BS
    Protoplasma; 2012 Oct; 249(4):859-69. PubMed ID: 22048637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FINE STRUCTURE AND TAXONOMY OF MONOMORPHINA AENIGMATICA COMB. NOV. (EUGLENOPHYTA)(1).
    Nudelman MA; Leonardi PI; Conforti V; Farmer MA; Triemer RE
    J Phycol; 2006 Feb; 42(1):194-202. PubMed ID: 27040898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunocytological detection of salivary mucins (MUC5B) on the mucosal pellicle lining human epithelial buccal cells.
    Morzel M; Siying T; Brignot H; Lherminier J
    Microsc Res Tech; 2014 Jun; 77(6):453-7. PubMed ID: 24706554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of distorted pellicle patterns in rigid photosynthetic euglenids (phacus dujardin).
    Esson HJ; Leander BS
    J Eukaryot Microbiol; 2010; 57(1):19-32. PubMed ID: 19878404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic corrugated cylinder-cone terahertz probe.
    Yao H; Zhong S
    J Opt Soc Am A Opt Image Sci Vis; 2014 Aug; 31(8):1856-60. PubMed ID: 25121543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular pellicle precursors.
    Vitkov L; Hannig M; Nekrashevych Y; Krautgartner WD
    Eur J Oral Sci; 2004 Aug; 112(4):320-5. PubMed ID: 15279650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced method for determining the optical response of highly complex biological photonic structures.
    Dolinko AE; Skigin DC
    J Opt Soc Am A Opt Image Sci Vis; 2013 Sep; 30(9):1746-59. PubMed ID: 24323255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PAR and UV effects on vertical migration and photosynthesis in Euglena gracilis.
    Richter P; Helbling W; Streb C; Häder DP
    Photochem Photobiol; 2007; 83(4):818-23. PubMed ID: 17645652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Ultrastructural description of Euglena pailasensis (Euglenozoa) from Rincón de la Vieja volcano, Guanacaste, Costa Rica].
    Sánchez E; Vargas M; Mora M; Ortega JM; Serrano A; Freer E; Sittenfeld A
    Rev Biol Trop; 2004 Mar; 52(1):31-40. PubMed ID: 17357397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.