These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 29047625)

  • 1. Tolerance of holographic polymer-dispersed liquid crystal memory for gamma-ray irradiation.
    Ogiwara A; Watanabe M; Ito Y
    Appl Opt; 2017 Jun; 56(16):4854-4860. PubMed ID: 29047625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of holographic polymer-dispersed liquid crystal memory by angle-multiplexing recording for optically reconfigurable gate arrays.
    Ogiwara A; Watanabe M
    Appl Opt; 2015 Dec; 54(36):10623-9. PubMed ID: 26837028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of holographic memory for defect tolerance in optically reconfigurable gate arrays.
    Ogiwara A; Watanabe M; Mabuchi T; Kobayashi F
    Appl Opt; 2010 Aug; 49(22):4255-61. PubMed ID: 20676180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holographic polymer-dispersed liquid crystal memory for optically reconfigurable gate array using subwavelength grating mask.
    Ogiwara A; Watanabe M; Mabuchi T; Kobayashi F
    Appl Opt; 2011 Dec; 50(34):6369-76. PubMed ID: 22192988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical reconfiguration by anisotropic diffraction in holographic polymer-dispersed liquid crystal memory.
    Ogiwara A; Watanabe M
    Appl Opt; 2012 Jul; 51(21):5168-77. PubMed ID: 22858959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of anisotropic diffraction in holographic polymer-dispersed liquid crystal memory.
    Ogiwara A; Watanabe M; Moriwaki R
    Appl Opt; 2013 Sep; 52(26):6529-36. PubMed ID: 24085129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of temperature dependable holographic memory using holographic polymer-dispersed liquid crystal.
    Ogiwara A; Watanabe M; Moriwaki R
    Opt Lett; 2013 Apr; 38(7):1158-60. PubMed ID: 23546276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holographic polymer dispersed liquid crystal enhanced by introducing urethane trimethacrylate.
    Nataj NH; Mohajerani E; Jashnsaz H; Jannesari A
    Appl Opt; 2012 Feb; 51(6):697-703. PubMed ID: 22358158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator.
    Ogiwara A; Hirokari T
    Appl Opt; 2008 Jun; 47(16):3015-22. PubMed ID: 18516121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings.
    Drevensek-Olenik I; Fally M; Ellabban MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021707. PubMed ID: 17025452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Properties of Electrically Tunable Two-Dimensional Photonic Lattice Structures Formed in a Holographic Polymer-Dispersed Liquid Crystal Film: Analysis and Experiment.
    Miki M; Ohira R; Tomita Y
    Materials (Basel); 2014 May; 7(5):3677-3698. PubMed ID: 28788643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid crystal holographic configurations for optically reconfigurable gate arrays.
    Yamaguchi N; Watanabe M
    Appl Opt; 2008 Sep; 47(26):4692-700. PubMed ID: 18784772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial Frequency Responses of Anisotropic Refractive Index Gratings Formed in Holographic Polymer Dispersed Liquid Crystals.
    Fukuda Y; Tomita Y
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superimposing acceleration and optimization method of optical reconfiguration speed without any increase of laser power.
    Mabuchi T; Watanabe M
    Appl Opt; 2010 Aug; 49(22):4120-6. PubMed ID: 20676162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically reconfigurable gate array using a colored configuration.
    Fujimori T; Watanabe M
    Appl Opt; 2018 Oct; 57(29):8625-8631. PubMed ID: 30461936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical diffractometry of highly anisotropic holographic gratings formed by liquid crystal and polymer phase separation.
    Kakiuchida H; Tazawa M; Yoshimura K; Ogiwara A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061701. PubMed ID: 23367963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deuteron NMR study of molecular ordering in a holographic-polymer-dispersed liquid crystal.
    Vilfan M; Zalar B; Fontecchio AK; Vilfan M; Escuti MJ; Crawford GP; Zumer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021710. PubMed ID: 12241199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings.
    Holmes ME; Malcuit MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066603. PubMed ID: 12188847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of optical vortex lattices based on holographic polymer-dispersed liquid crystal films.
    Fuh AYG; Tsai YL; Yang CH; Wu ST
    Opt Lett; 2018 Jan; 43(1):154-157. PubMed ID: 29328220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical configuration acceleration on a new optically reconfigurable gate array very large scale integration using a negative logic implementation.
    Moriwaki R; Watanabe M
    Appl Opt; 2013 Mar; 52(9):1939-46. PubMed ID: 23518740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.