These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 29047685)
1. Nondestructive determination of optical properties of a pear using spatial frequency domain imaging combined with phase-measuring profilometry. He X; Fu X; Rao X; Fu F Appl Opt; 2017 Oct; 56(29):8207-8215. PubMed ID: 29047685 [TBL] [Abstract][Full Text] [Related]
3. Fast estimation of optical properties of pear using a single snapshot technique combined with a least-squares support vector regression model based on spatial frequency domain imaging. He X; Li T; Fu X; Jiang X; Gao Y; Rao X Appl Opt; 2019 May; 58(15):4075-4084. PubMed ID: 31158164 [TBL] [Abstract][Full Text] [Related]
4. Spatial Frequency Domain Imaging System Calibration, Correction and Application for Pear Surface Damage Detection. Luo Y; Jiang X; Fu X Foods; 2021 Sep; 10(9):. PubMed ID: 34574261 [TBL] [Abstract][Full Text] [Related]
5. Characterizing reduced scattering coefficient of normal human skin across different anatomic locations and Fitzpatrick skin types using spatial frequency domain imaging. Phan T; Rowland R; Ponticorvo A; Le BC; Wilson RH; Sharif SA; Kennedy GT; Bernal N; Durkin AJ J Biomed Opt; 2021 Feb; 26(2):. PubMed ID: 33569936 [TBL] [Abstract][Full Text] [Related]
6. Hyperspectral imaging in the spatial frequency domain with a supercontinuum source. Torabzadeh M; Stockton P; Kennedy G; Saager R; Durkin AJ; Bartels R; Tromberg B J Biomed Opt; 2019 Jul; 24(7):1-9. PubMed ID: 31271005 [TBL] [Abstract][Full Text] [Related]
7. Quantifying the confounding effect of pigmentation on measured skin tissue optical properties: a comparison of colorimetry with spatial frequency domain imaging. Phan T; Rowland R; Ponticorvo A; Le BC; Sharif SA; Kennedy GT; Wilson RH; Durkin AJ J Biomed Opt; 2022 Mar; 27(3):. PubMed ID: 35324096 [TBL] [Abstract][Full Text] [Related]
8. Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer. Weber JR; Cuccia DJ; Johnson WR; Bearman GH; Durkin AJ; Hsu M; Lin A; Binder DK; Wilson D; Tromberg BJ J Biomed Opt; 2011; 16(1):011015. PubMed ID: 21280902 [TBL] [Abstract][Full Text] [Related]
9. Generic and Model-Based Calibration Method for Spatial Frequency Domain Imaging with Parameterized Frequency and Intensity Correction. Lohner SA; Nothelfer S; Kienle A Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765944 [TBL] [Abstract][Full Text] [Related]
10. Noncontact and Wide-Field Characterization of the Absorption and Scattering Properties of Apple Fruit Using Spatial-Frequency Domain Imaging. Hu D; Fu X; He X; Ying Y Sci Rep; 2016 Dec; 6():37920. PubMed ID: 27910871 [TBL] [Abstract][Full Text] [Related]
11. Visible spatial frequency domain imaging with a digital light microprojector. Lin AJ; Ponticorvo A; Konecky SD; Cui H; Rice TB; Choi B; Durkin AJ; Tromberg BJ J Biomed Opt; 2013 Sep; 18(9):096007. PubMed ID: 24005154 [TBL] [Abstract][Full Text] [Related]
12. Shortwave infrared spatial frequency domain imaging for non-invasive measurement of tissue and blood optical properties. Pilvar A; Plutzky J; Pierce M; Roblyer D J Biomed Opt; 2022 Jun; 27(6):. PubMed ID: 35715883 [TBL] [Abstract][Full Text] [Related]
13. Hyperspectral diffuse reflectance imaging for rapid, noncontact measurement of the optical properties of turbid materials. Qin J; Lu R Appl Opt; 2006 Nov; 45(32):8366-73. PubMed ID: 17068584 [TBL] [Abstract][Full Text] [Related]