These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 29047693)

  • 1. Fiber-based tools: material removal and mid-spatial frequency error reduction.
    Shahinian H; Hassan M; Cherukuri H; Mullany BA
    Appl Opt; 2017 Oct; 56(29):8266-8274. PubMed ID: 29047693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of fiber-based tools for glass polishing using experimental and computational approaches.
    Shahinian H; Cherukuri H; Mullany B
    Appl Opt; 2016 Jun; 55(16):4307-16. PubMed ID: 27411180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces.
    He Z; Hai K; Li K; Yu J; Wu L; Zhang L; Su X; Cai L; Huang W; Hang W
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and Numerical Investigation on the Effect of Scratch Direction on Material Removal and Friction Characteristic in BK7 Scratching.
    Wang W; Wan Z; Yang S; Feng J; Dong L; Lu L
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32295306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smoothing tool design and performance during subaperture glass polishing.
    Suratwala T; Tham G; Steele R; Wong L; Menapace J; Ray N; Bauman B
    Appl Opt; 2023 Mar; 62(8):2061-2072. PubMed ID: 37133094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mid-spatial frequency removal on aluminum free-form mirror.
    Li H; Walker DD; Zheng X; Su X; Wu L; Reynolds C; Yu G; Li T; Zhang P
    Opt Express; 2019 Sep; 27(18):24885-24899. PubMed ID: 31510370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of surface roughness in magnetic abrasive finishing of BK7 optical glass.
    Pashmforoush F; Rahimi A; Kazemi M
    Appl Opt; 2015 Oct; 54(28):8275-81. PubMed ID: 26479596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of structured mid-spatial frequency surface errors on image performance.
    Tamkin JM; Milster TD
    Appl Opt; 2010 Nov; 49(33):6522-36. PubMed ID: 21102679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensating for velocity truncation during subaperture polishing by controllable and time-variant tool influence functions.
    Dong Z; Cheng H; Tam HY
    Appl Opt; 2015 Feb; 54(5):1167-74. PubMed ID: 25968037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and in-depth analysis of the mid-spatial-frequency error influenced by actual contact pressure distribution in sub-aperture polishing.
    Zhang L; Wan S; Li H; Guo H; Wei C; Zhang D; Shao J
    Opt Express; 2023 Apr; 31(9):14414-14431. PubMed ID: 37157306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization technique for rolled edge control process based on the acentric tool influence functions.
    Du H; Song C; Li S; Xu M; Peng X
    Appl Opt; 2017 May; 56(15):4330-4337. PubMed ID: 29047857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on the influence of the non-stationary effect of the magnetorheological finishing removal function on mid-frequency errors of optical component surfaces.
    Wang B; Tie G; Shi F; Song C; Guo S
    Opt Express; 2023 Oct; 31(21):35016-35031. PubMed ID: 37859243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edge effect modeling and experiments on active lap processing.
    Liu H; Wu F; Zeng Z; Fan B; Wan Y
    Opt Express; 2014 May; 22(9):10761-74. PubMed ID: 24921777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model of the material removal function and an experimental study on a magnetorheological finishing process using a small ball-end permanent-magnet polishing head.
    Chen M; Liu H; Cheng J; Yu B; Fang Z
    Appl Opt; 2017 Jul; 56(19):5573-5582. PubMed ID: 29047518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restraint of the mid-spatial frequency error on optical surfaces by multi-jet polishing.
    Zhang Z; Cheung CF; Wang C; Ho LT; Guo J
    Opt Express; 2022 Dec; 30(26):46307-46323. PubMed ID: 36558588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further investigations on fixed abrasive diamond pellets used for diminishing mid-spatial frequency errors of optical mirrors.
    Dong Z; Cheng H; Tam HY
    Appl Opt; 2014 Jan; 53(3):327-34. PubMed ID: 24514115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study on the splitting of a vapor bubble in the ultrasonic assisted EDM process with the curved tool and workpiece.
    Shervani-Tabar MT; Seyed-Sadjadi MH; Shabgard MR
    Ultrasonics; 2013 Jan; 53(1):203-10. PubMed ID: 22784706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and analysis of the mid-spatial- frequency error characteristics and generation mechanism in sub-aperture optical polishing.
    Wan S; Wei C; Hong Z; Shao J
    Opt Express; 2020 Mar; 28(6):8959-8973. PubMed ID: 32225511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of edge effect in subaperture tool influence functions of computer controlled optical surfacing.
    Wan S; Zhang X; He X; Xu M
    Appl Opt; 2016 Dec; 55(36):10223-10228. PubMed ID: 28059243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of aspherics using a mathematical model for material removal.
    Wagner RE; Shannon RR
    Appl Opt; 1974 Jul; 13(7):1683-9. PubMed ID: 20134531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.