These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29047715)

  • 41. The enhanced formaldehyde-sensing properties of P3HT-ZnO hybrid thin film OTFT sensor and further insight into its stability.
    Tai H; Li X; Jiang Y; Xie G; Du X
    Sensors (Basel); 2015 Jan; 15(1):2086-103. PubMed ID: 25608214
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simultaneous Generation of Surface Plasmon and Lossy Mode Resonances in the Same Planar Platform.
    Fuentes O; Del Villar I; Dominguez I; Corres JM; Matías IR
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Material platform for realization of a "fiber-like" lossy mode resonance response in a simple Kretschmann-Raether geometry.
    Goswami S; Sharma AK
    Opt Lett; 2021 Jul; 46(13):3065-3068. PubMed ID: 34197380
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical fiber thermo-refractometer.
    Imas JJ; Zamarreño CR; Del Villar I; Da Silva JCC; Oliveira V; Matías IR
    Opt Express; 2022 Mar; 30(7):11036-11045. PubMed ID: 35473056
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Zinc oxide nanoparticle-doped nanoporous solgel fiber as a humidity sensor with enhanced sensitivity and large linear dynamic range.
    Aneesh R; Khijwania SK
    Appl Opt; 2013 Aug; 52(22):5493-9. PubMed ID: 23913070
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Subtle Application of Electrical Field-Induced Lossy Mode Resonance to Enhance Performance of Optical Planar Waveguide Biosensor.
    Lin YC; Chen LY
    Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33803880
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Research on optical fiber SPR humidity sensor and resonance spectrum characteristic].
    Zhang SH; Zeng J; Sun XM; Mu H; Liang DK
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Feb; 32(2):402-6. PubMed ID: 22512178
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improving the width of lossy mode resonances in a reflection configuration D-shaped fiber by nanocoating laser ablation.
    Fuentes O; Vaiano P; Del Villar I; Quero G; Corres J; Consales M; Matías I; Cusano A
    Opt Lett; 2020 Sep; 45(17):4738-4741. PubMed ID: 32870845
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microscale diamond protection for a ZnO coated fiber optic sensor.
    Kosowska M; Listewnik P; Majchrowicz D; Rycewicz M; Bechelany M; Fleger Y; Chen M; Fixler D; Dholakia K; Szczerska M
    Sci Rep; 2020 Nov; 10(1):19141. PubMed ID: 33154464
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lossy Mode Resonance Sensors Based on Anisotropic Few-Layer Black Phosphorus.
    Shen Y; Zhu Q; Chen Z; Wu J; Chen B; Dai E; Pan W
    Nanomaterials (Basel); 2024 Apr; 14(9):. PubMed ID: 38727330
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spectral measurements with hybrid LMR and SAW platform for dual parameter sensing.
    Dominguez I; Del Villar I; Corres J; Lachaud JL; Yang Y; Hallil H; Dejous C; Matias IR
    Analyst; 2022 Nov; 147(23):5477-5485. PubMed ID: 36321954
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit.
    Zhu Z; Liu L; Liu Z; Zhang Y; Zhang Y
    Opt Lett; 2017 Aug; 42(15):2948-2951. PubMed ID: 28957216
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fiber optic surface-plasmon-resonance-based highly sensitive arsenic sensor prepared using α-Fe
    Sharma S; Gupta BD
    Appl Opt; 2018 Dec; 57(36):10466-10473. PubMed ID: 30645390
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures.
    Wang Z; Zhan X; Wang Y; Muhammad S; Huang Y; He J
    Nanoscale; 2012 Apr; 4(8):2678-84. PubMed ID: 22434131
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The impact of ZnO configuration as an external layer on the sensitivity of a bi-layer coated polymer optical fiber probe.
    Samavati Z; Samavati A; Ismail AF; Yahya N; Othman MHD; Rahman MA; Bakar MAA; Amiri IS
    RSC Adv; 2020 Mar; 10(22):12864-12875. PubMed ID: 35492078
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Zinc oxide nanoparticle based optical fiber humidity sensor having linear response throughout a large dynamic range.
    Aneesh R; Khijwania SK
    Appl Opt; 2011 Sep; 50(27):5310-4. PubMed ID: 21947051
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers.
    Mishra SK; Gupta BD
    Analyst; 2013 May; 138(9):2640-6. PubMed ID: 23486702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film.
    Wang SY; Ma JY; Li ZJ; Su HQ; Alkurd NR; Zhou WL; Wang L; Du B; Tang YL; Ao DY; Zhang SC; Yu QK; Zu XT
    J Hazard Mater; 2015 Mar; 285():368-74. PubMed ID: 25528236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High sensitive and selective C-reactive protein detection by means of lossy mode resonance based optical fiber devices.
    Zubiate P; Zamarreño CR; Sánchez P; Matias IR; Arregui FJ
    Biosens Bioelectron; 2017 Jul; 93():176-181. PubMed ID: 27638106
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simultaneous estimation of vitamin K1 and heparin with low limit of detection using cascaded channels fiber optic surface plasmon resonance.
    Tabassum R; Gupta BD
    Biosens Bioelectron; 2016 Dec; 86():48-55. PubMed ID: 27318569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.