These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29047734)

  • 1. Evaluation of a HgCdTe e-APD based detector for 2  μm CO
    Dumas A; Rothman J; Gibert F; Édouart D; Lasfargues G; Cénac C; Mounier FL; Pellegrino J; Zanatta JP; Bardoux A; Tinto F; Flamant P
    Appl Opt; 2017 Sep; 56(27):7577-7585. PubMed ID: 29047734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of HgCdTe (100) and HgCdTe (111)B Heterostructures Grown by MOCVD and Their Potential Application to APDs Operating in the IR Range up to 8 µm.
    Kopytko M; Sobieski J; Gawron W; Martyniuk P
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths.
    Sun X; Abshire JB; Beck JD; Mitra P; Reiff K; Yang G
    Opt Express; 2017 Jul; 25(14):16589-16602. PubMed ID: 28789161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility study of a space-based high pulse energy 2  μm CO
    Singh UN; Refaat TF; Ismail S; Davis KJ; Kawa SR; Menzies RT; Petros M
    Appl Opt; 2017 Aug; 56(23):6531-6547. PubMed ID: 29047943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocurrent Measurement of PC and PV HgCdTe Detectors.
    Eppeldauer GP; Martin RJ
    J Res Natl Inst Stand Technol; 2001; 106(3):577-87. PubMed ID: 27500036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode.
    He J; Li Q; Wang P; Wang F; Gu Y; Shen C; Luo M; Yu C; Chen L; Chen X; Lu W; Hu W
    Opt Express; 2020 Oct; 28(22):33556-33563. PubMed ID: 33115015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-Temperature (RT) Extended Short-Wave Infrared (e-SWIR) Avalanche Photodiode (APD) with a 2.6 µm Cutoff Wavelength.
    Benker M; Gu G; Senckowski AZ; Xiang B; Dwyer CH; Adams RJ; Xie Y; Nagarajan R; Li Y; Lu X
    Micromachines (Basel); 2024 Jul; 15(8):. PubMed ID: 39203592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms.
    Refaat TF; Ismail S; Nehrir AR; Hair JW; Crawford JH; Leifer I; Shuman T
    Opt Express; 2013 Dec; 21(25):30415-32. PubMed ID: 24514619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared detector module for airborne hyperspectral LiDAR: design and demonstration.
    Qian L; Wu D; Liu D; Zhong L; Shi S; Song S; Gong W
    Appl Opt; 2023 Mar; 62(8):2161-2167. PubMed ID: 37133106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface leakage current in 12.5  μm long-wavelength HgCdTe infrared photodiode arrays.
    Qiu W; Hu W; Lin C; Chen X; Lu W
    Opt Lett; 2016 Feb; 41(4):828-31. PubMed ID: 26872199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CMOS Optoelectronic Receiver IC with an On-Chip Avalanche Photodiode for Home-Monitoring LiDAR Sensors.
    Joo JE; Lee MJ; Park SM
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced red and near infrared detection in flow cytometry using avalanche photodiodes.
    Lawrence WG; Varadi G; Entine G; Podniesinski E; Wallace PK
    Cytometry A; 2008 Aug; 73(8):767-76. PubMed ID: 18612992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small All-Range Lidar for Asteroid and Comet Core Missions.
    Sun X; Cremons DR; Mazarico E; Yang G; Abshire JB; Smith DE; Zuber MT; Storm M; Martin N; Hwang J; Beck JD; Huntoon NR; Rawlings DM
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HgCdTe mid-Infrared photo response enhanced by monolithically integrated meta-lenses.
    Li F; Deng J; Zhou J; Chu Z; Yu Y; Dai X; Guo H; Chen L; Guo S; Lan M; Chen X
    Sci Rep; 2020 Apr; 10(1):6372. PubMed ID: 32286355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical Evaluation of Signal-to-Noise Ratios for Avalanche- and Single-Photon Avalanche Diodes.
    Buchner A; Hadrath S; Burkard R; Kolb FM; Ruskowski J; Ligges M; Grabmaier A
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems.
    Takai I; Matsubara H; Soga M; Ohta M; Ogawa M; Yamashita T
    Sensors (Basel); 2016 Mar; 16(4):459. PubMed ID: 27043569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avalanche photodiode based detector for beam emission spectroscopy.
    Dunai D; Zoletnik S; Sárközi J; Field AR
    Rev Sci Instrum; 2010 Oct; 81(10):103503. PubMed ID: 21034087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high signal-to-noise ratio balanced detector system for 2 μm coherent wind lidar.
    Wang R; Chen L; Zhao Y; Jin G
    Rev Sci Instrum; 2020 Jul; 91(7):073101. PubMed ID: 32752857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upconversion detector for range-resolved DIAL measurement of atmospheric CH
    Meng L; Fix A; Wirth M; Høgstedt L; Tidemand-Lichtenberg P; Pedersen C; Rodrigo PJ
    Opt Express; 2018 Feb; 26(4):3850-3860. PubMed ID: 29475363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Impact Ionization Coefficient of ZnO Based on a p-Si/i-ZnO/n-AZO Avalanche Photodiode.
    Li G; Zhao X; Jia X; Li S; He Y
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.