These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29047769)

  • 1. Performance of photomultipliers in the context of laser-induced incandescence.
    Mansmann R; Dreier T; Schulz C
    Appl Opt; 2017 Oct; 56(28):7849-7860. PubMed ID: 29047769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential signal detection for high dynamic range time-resolved laser-induced incandescence.
    Mansmann R; Thomson K; Smallwood G; Dreier T; Schulz C
    Opt Express; 2017 Feb; 25(3):2413-2421. PubMed ID: 29519087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements.
    Lehre T; Jungfleisch B; Suntz R; Bockhorn H
    Appl Opt; 2003 Apr; 42(12):2021-30. PubMed ID: 12716142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-induced incandescence for soot diagnostics at high pressures.
    Hofmann M; Bessler WG; Schulz C; Jander H
    Appl Opt; 2003 Apr; 42(12):2052-62. PubMed ID: 12716145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity.
    Snelling DR; Smallwood GJ; Liu F; Gülder OL; Bachalo WD
    Appl Opt; 2005 Nov; 44(31):6773-85. PubMed ID: 16270566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-induced incandescence: excitation intensity.
    Vander Wal RL; Jensen KA
    Appl Opt; 1998 Mar; 37(9):1607-16. PubMed ID: 18268755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames.
    Michael JB; Venkateswaran P; Shaddix CR; Meyer TR
    Appl Opt; 2015 Apr; 54(11):3331-44. PubMed ID: 25967321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence.
    Huber FJ; Altenhoff M; Will S
    Rev Sci Instrum; 2016 May; 87(5):053102. PubMed ID: 27250387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced red and near infrared detection in flow cytometry using avalanche photodiodes.
    Lawrence WG; Varadi G; Entine G; Podniesinski E; Wallace PK
    Cytometry A; 2008 Aug; 73(8):767-76. PubMed ID: 18612992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-color laser-induced incandescence (2C-LII) technique for absolute soot volume fraction measurements in flames.
    De Iuliis S; Cignoli F; Zizak G
    Appl Opt; 2005 Dec; 44(34):7414-23. PubMed ID: 16353814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging.
    Nillius P; Klamra W; Sibczynski P; Sharma D; Danielsson M; Badano A
    Med Phys; 2015 Feb; 42(2):600-605. PubMed ID: 28102604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-induced incandescence: detection issues.
    Vander Wal RL
    Appl Opt; 1996 Nov; 35(33):6548-59. PubMed ID: 21127679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of FRAME for Simultaneous LIF and LII Imaging in Sooting Flames Using a Single Camera.
    Mishra YN; Boggavarapu P; Chorey D; Zigan L; Will S; Deshmukh D; Rayavarapu R
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavity ringdown and laser-induced incandescence measurements of soot.
    Vander Wal RL; Ticich TM
    Appl Opt; 1999 Mar; 38(9):1444-51. PubMed ID: 18305765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-induced incandescence for soot particle size measurements in premixed flat flames.
    Axelsson B; Collin R; Bengtsson PE
    Appl Opt; 2000 Jul; 39(21):3683-90. PubMed ID: 18349943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering.
    Yoder GD; Diwakar PK; Hahn DW
    Appl Opt; 2005 Jul; 44(20):4211-9. PubMed ID: 16045207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lidar remote sensing of laser-induced incandescence on light absorbing particles in the atmosphere.
    Miffre A; Anselmo C; Geffroy S; Fréjafon E; Rairoux P
    Opt Express; 2015 Feb; 23(3):2347-60. PubMed ID: 25836102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating photomultiplier tube nonlinearities in high-speed phosphor thermometry using light emitting diode simulated decay curves.
    Feuk H; Nilsson S; Aldén M; Richter M
    Rev Sci Instrum; 2021 Dec; 92(12):123102. PubMed ID: 34972472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the irising effect of a slow-gating intensified charge-coupled device on laser-induced incandescence measurements of soot.
    Shaddix CR; Williams TC
    Rev Sci Instrum; 2009 Mar; 80(3):033702. PubMed ID: 19334922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gated photomultiplier response characterization for DIAL measurements.
    Lee HS; Schwemmer GK; Korb CL; Dombrowski M; Prasad C
    Appl Opt; 1990 Aug; 29(22):3303-15. PubMed ID: 20567413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.