These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 29047886)

  • 41. A representative dataset of the self-reproducing light ray family between the multiple distributed Bragg reflectors of multiple VCSELs and the inner surface of plane-convex mirror.
    Li Y; Li Z; Chen M; Liu J
    Data Brief; 2021 Aug; 37():107257. PubMed ID: 34277904
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.
    Khadem MH; Wemhoff AP
    J Chem Phys; 2013 Feb; 138(8):084708. PubMed ID: 23464173
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Top-Hat HELLISH-VCSOA for optical amplification and wavelength conversion for 0.85 to 1.3μm operation.
    Chaqmaqchee FA; Balkan N; Herrero JM
    Nanoscale Res Lett; 2012 Sep; 7(1):525. PubMed ID: 23009076
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tunable distributed Bragg reflectors with wide-angle and broadband high-reflectivity using nanoporous/dense titanium dioxide film stacks for visible wavelength applications.
    Leem JW; Guan XY; Yu JS
    Opt Express; 2014 Jul; 22(15):18519-26. PubMed ID: 25089471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Laser flash method for measuring thermal conductivity of liquids-application to low thermal conductivity liquids.
    Tada Y; Harada M; Tanigaki M; Eguchi W
    Rev Sci Instrum; 1978 Sep; 49(9):1305. PubMed ID: 18699307
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nondestructive measurement and high-precision evaluation of the electrical conductivity of doped GaAs wafers using microwaves.
    Liu L; Ju Y
    Rev Sci Instrum; 2010 Dec; 81(12):124701. PubMed ID: 21198038
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 2.6 W optically-pumped semiconductor disk laser operating at 1.57-microm using wafer fusion.
    Rautiainen J; Lyytikäinen J; Sirbu A; Mereuta A; Caliman A; Kapon E; Okhotnikov OG
    Opt Express; 2008 Dec; 16(26):21881-6. PubMed ID: 19104620
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition.
    Leem JW; Yu JS
    Opt Express; 2012 Aug; 20(18):20576-81. PubMed ID: 23037105
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prediction of phonon thermal transport in thin GaAs, InAs and InP nanowires by molecular dynamics simulations: influence of the interatomic potential.
    Carrete J; Longo RC; Gallego LJ
    Nanotechnology; 2011 May; 22(18):185704. PubMed ID: 21427474
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Band offset in semiconductor heterojunctions.
    Di Liberto G; Pacchioni G
    J Phys Condens Matter; 2021 Aug; 33(41):. PubMed ID: 34284370
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Large-area broadband saturable Bragg reflectors by use of oxidized AlAs.
    Tandon SN; Gopinath JT; Shen HM; Petrich GS; Kolodziejski LA; Kärtner FX; Ippen EP
    Opt Lett; 2004 Nov; 29(21):2551-3. PubMed ID: 15584291
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Magnetotransport Properties of Epitaxial Ge/AlAs Heterostructures Integrated on GaAs and Silicon.
    Hudait MK; Clavel M; Goley PS; Xie Y; Heremans JJ
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22315-21. PubMed ID: 26413844
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanoporous TiO2-Based Distributed Bragg Reflectors for Near-Infrared Wavelength Applications.
    Guan XY; Leem JW; Yu JS
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9650-5. PubMed ID: 26682392
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-power flip-chip semiconductor disk laser in the 1.3 μm wavelength band.
    Rantamäki A; Sirbu A; Saarinen EJ; Lyytikäinen J; Mereuta A; Iakovlev V; Kapon E; Okhotnikov OG
    Opt Lett; 2014 Aug; 39(16):4855-8. PubMed ID: 25121892
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of Thermal Conductivities of Rubbers by MD Simulations-New Insights.
    Vasilev A; Lorenz T; Breitkopf C
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631927
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stretch-tuneable dielectric mirrors and optical microcavities.
    Kolle M; Zheng B; Gibbons N; Baumberg JJ; Steiner U
    Opt Express; 2010 Mar; 18(5):4356-64. PubMed ID: 20389447
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Towards GHz-THz cavity optomechanics in DBR-based semiconductor resonators.
    Lanzillotti-Kimura ND; Fainstein A; Jusserand B
    Ultrasonics; 2015 Feb; 56():80-9. PubMed ID: 24962289
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations.
    Mahajan SS; Subbarayan G; Sammakia BG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056701. PubMed ID: 18233784
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Reliability Study of Grating Coupled Semiconductor Laser Based on Raman Spectra Technique].
    Jia P; Qin L; Zhang X; Zhang J; Liu TY; Men ZW; Ning YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1745-8. PubMed ID: 30052384
    [TBL] [Abstract][Full Text] [Related]  

  • 60. GaN-based distributed Bragg reflector for high-brightness LED and solid-state lighting.
    Wang DX; Ferguson IT; Buck JA
    Appl Opt; 2007 Jul; 46(21):4763-7. PubMed ID: 17609724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.