These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 29047923)
1. Simple and flexible phase compensation for digital holographic microscopy with electrically tunable lens. Deng D; Peng J; Qu W; Wu Y; Liu X; He W; Peng X Appl Opt; 2017 Jul; 56(21):6007-6014. PubMed ID: 29047923 [TBL] [Abstract][Full Text] [Related]
2. Focal length calibration of an electrically tunable lens by digital holography. Wang Z; Qu W; Yang F; Asundi AK Appl Opt; 2016 Feb; 55(4):749-56. PubMed ID: 26836076 [TBL] [Abstract][Full Text] [Related]
3. Physical compensation of phase curvature in digital holographic microscopy by use of programmable liquid lens. Doblas A; Hincapie-Zuluaga D; Saavedra G; Martínez-Corral M; Garcia-Sucerquia J Appl Opt; 2015 Jun; 54(16):5229-33. PubMed ID: 26192688 [TBL] [Abstract][Full Text] [Related]
4. Enhanced quantitative phase imaging in self-interference digital holographic microscopy using an electrically focus tunable lens. Schubert R; Vollmer A; Ketelhut S; Kemper B Biomed Opt Express; 2014 Dec; 5(12):4213-22. PubMed ID: 25574433 [TBL] [Abstract][Full Text] [Related]
5. Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit. Sánchez-Ortiga E; Doblas A; Saavedra G; Martínez-Corral M; Garcia-Sucerquia J Appl Opt; 2014 Apr; 53(10):2058-66. PubMed ID: 24787162 [TBL] [Abstract][Full Text] [Related]
6. Quasi-physical phase compensation in digital holographic microscopy. Qu W; Choo CO; Singh VR; Yingjie Y; Asundi A J Opt Soc Am A Opt Image Sci Vis; 2009 Sep; 26(9):2005-11. PubMed ID: 19721686 [TBL] [Abstract][Full Text] [Related]
7. Automatic full compensation of quantitative phase imaging in off-axis digital holographic microscopy. Trujillo C; Castañeda R; Piedrahita-Quintero P; Garcia-Sucerquia J Appl Opt; 2016 Dec; 55(36):10299-10306. PubMed ID: 28059249 [TBL] [Abstract][Full Text] [Related]
8. Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Colomb T; Kühn J; Charrière F; Depeursinge C; Marquet P; Aspert N Opt Express; 2006 May; 14(10):4300-6. PubMed ID: 19516582 [TBL] [Abstract][Full Text] [Related]
9. Analysis of axial scanning range and magnification variation in wide-field microscope for measurement using an electrically tunable lens. Qu Y; Hu Y Microsc Res Tech; 2019 Feb; 82(2):101-113. PubMed ID: 30451353 [TBL] [Abstract][Full Text] [Related]
10. Simple, non-mechanical and automatic calibration approach for axial-scanning microscopy with an electrically tunable lens. Li S; Zhao Y; Wen W; Ma Y; Liu S; Chen G; Ye Y Microsc Res Tech; 2023 Oct; 86(10):1391-1400. PubMed ID: 37119118 [TBL] [Abstract][Full Text] [Related]
11. Accurate quantitative phase digital holographic microscopy with single- and multiple-wavelength telecentric and nontelecentric configurations. Nguyen T; Nehmetallah G; Raub C; Mathews S; Aylo R Appl Opt; 2016 Jul; 55(21):5666-83. PubMed ID: 27463923 [TBL] [Abstract][Full Text] [Related]
12. Development of an autofocusing system using an electrically tunable lens in large area holographic lithography. Hou R; Yu J; Huang Y; Ke H; Liu H Appl Opt; 2020 Mar; 59(8):2521-2529. PubMed ID: 32225788 [TBL] [Abstract][Full Text] [Related]
13. Phase-shifting by means of an electronically tunable lens: quantitative phase imaging of biological specimens with digital holographic microscopy. Trujillo C; Doblas A; Saavedra G; Martínez-Corral M; García-Sucerquia J Opt Lett; 2016 Apr; 41(7):1416-9. PubMed ID: 27192250 [TBL] [Abstract][Full Text] [Related]
14. Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. Ferraro P; De Nicola S; Finizio A; Coppola G; Grilli S; Magro C; Pierattini G Appl Opt; 2003 Apr; 42(11):1938-46. PubMed ID: 12699340 [TBL] [Abstract][Full Text] [Related]
15. Compensation of phase aberration by using a virtual confocal scheme in digital holographic microscopy. Chew YK; Shiu MT; Wang JC; Chang CC Appl Opt; 2014 Sep; 53(27):G184-91. PubMed ID: 25322128 [TBL] [Abstract][Full Text] [Related]
17. Alignment-tolerant single-shot digital holographic microscopy based on computer-controlled telecentricity. Park SJ; Kim BM; Kim ES Appl Opt; 2019 Apr; 58(12):3260-3271. PubMed ID: 31044803 [TBL] [Abstract][Full Text] [Related]
19. Microlens characterization by digital holographic microscopy with physical spherical phase compensation. Weijuan Q; Choo CO; Yingjie Y; Asundi A Appl Opt; 2010 Nov; 49(33):6448-54. PubMed ID: 21102670 [TBL] [Abstract][Full Text] [Related]
20. Multi-step phase aberration compensation method based on optimal principal component analysis and subsampling for digital holographic microscopy. Zhang X; Sun J; Zhang Z; Fan Y; Chen Q; Zuo C Appl Opt; 2019 Jan; 58(2):389-397. PubMed ID: 30645316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]