These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29047954)

  • 1. Effects of interface thermal resistance on surface morphology evolution in precision glass molding for microlens array.
    Xie J; Zhou T; Ruan B; Du Y; Wang X
    Appl Opt; 2017 Aug; 56(23):6622-6630. PubMed ID: 29047954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Interface Thermal Resistance Evolution between Carbide-Bonded Graphene Coating and Polymer in Rapid Molding for Microlens Array.
    Liu X; Guo C; Liu Y; Wang F; Feng Y
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Off-spindle-axis spiral grinding of aspheric microlens array mold inserts.
    Yan G; Zhang Y; You K; Li Z; Yuan Y; Fang F
    Opt Express; 2019 Apr; 27(8):10873-10889. PubMed ID: 31052941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication of a glass microlens array using a vitreous carbon mold.
    Kim YK; Ju JH; Kim SM
    Opt Express; 2018 Jun; 26(12):14936-14944. PubMed ID: 30114798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing of a microlens array mold by a two-step method combining microindentation and precision polishing.
    Zhang L; Yi AY
    Appl Opt; 2020 Aug; 59(23):6945-6952. PubMed ID: 32788785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision compression molding of glass microlenses and microlens arrays--an experimental study.
    Firestone GC; Yi AY
    Appl Opt; 2005 Oct; 44(29):6115-22. PubMed ID: 16237925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and experimental performance analysis of a novel heating system and its application to glass hot embossing technology.
    Li L; Chan MK; Lee WB; Ng MC; Chan KL
    Opt Lett; 2019 Jul; 44(14):3454-3457. PubMed ID: 31305546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of Interfacial Adhesion and Re-Ir Alloy Coating in Chalcogenide Glass Molding.
    Zhu Z; Zhou T; Yu Q; Wang X; Xie J; Yan T; Ruan H; Cheung C
    Langmuir; 2023 Jul; 39(28):9924-9931. PubMed ID: 37369105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Investigation on Laser Assisted Diamond Turning of Binderless Tungsten Carbide by In-Process Heating.
    You K; Fang F; Yan G; Zhang Y
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33327609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Study on the Material Removal Characteristics and Damage Mechanism of Lapping for Pressureless Sintered Silicon Carbide (SSiC) Microlens Cavity.
    Zhou T; Li Z; Guo W; Liu P; Zhao B; Wang X
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision glass molding of diffractive optical elements with high surface quality.
    Zhang Y; Liang R; Spires OJ; Yin S; Yi A; Milster TD
    Opt Lett; 2020 Dec; 45(23):6438-6441. PubMed ID: 33258831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replication of optical microlens array using photoresist coated molds.
    Chakrabarti M; Dam-Hansen C; Stubager J; Pedersen TF; Pedersen HC
    Opt Express; 2016 May; 24(9):9528-40. PubMed ID: 27137566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alignment error modeling and control of a double-sided microlens array during precision glass molding.
    Zeng Z; Zhou T; Yu Q; Zhou J; Wang G; Xie Q; Wang Z; Yao X; Guo Y
    Microsyst Nanoeng; 2024; 10():48. PubMed ID: 38590817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on Deformation Behavior of Glass in High-temperature Molding for Massive Unit Microlens Arrays.
    Wang G; Zhou T; Sun X; Gao L; Yao X; Zhao B; Guo W
    ACS Appl Mater Interfaces; 2024 Aug; 16(32):43038-43048. PubMed ID: 39082273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Chalcogenide Glass Based Hexagonal Gapless Microlens Arrays via Combining Femtosecond Laser Assist Chemical Etching and Precision Glass Molding Processes.
    Zhang F; Yang Q; Bian H; Li M; Hou X; Chen F
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid localized heating of graphene coating on a silicon mold by induction for precision molding of polymer optics.
    Zhang L; Zhou W; Yi AY
    Opt Lett; 2017 Apr; 42(7):1369-1372. PubMed ID: 28362771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface defect analysis on formed chalcogenide glass Ge
    Zhou T; Zhou Q; Xie J; Liu X; Wang X; Ruan H
    Appl Opt; 2017 Oct; 56(30):8394-8402. PubMed ID: 29091618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replication of high refractive index glass microlens array by imprinting in conjunction with laser assisted rapid surface heating for high resolution confocal microscopy imaging.
    Kim T; Bin Mohd Zawawi MZ; Shin R; Kim D; Choi W; Park C; Kang S
    Opt Express; 2019 Jun; 27(13):18869-18882. PubMed ID: 31252822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Warpage and Residual Stress of Precision Glass Micro-Optics Heated by Carbide-Bonded Graphene Coating in Hot Embossing Process.
    Li L; Zhou J
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33535579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal/tribological effects of superimposed ultrasonic vibration on viscoelastic responses and mold-filling capacity of optical glass: A comparative study.
    Luo H; Yu J; Lou H; Huang K; Hu J; Xu B
    Ultrasonics; 2020 Dec; 108():106234. PubMed ID: 32795727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.