BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29047968)

  • 1. Line-scanning laser scattering system for fast defect inspection of a large aperture surface.
    Dong J
    Appl Opt; 2017 Sep; 56(25):7089-7098. PubMed ID: 29047968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dark-field microscopic image stitching method for surface defects evaluation of large fine optics.
    Liu D; Wang S; Cao P; Li L; Cheng Z; Gao X; Yang Y
    Opt Express; 2013 Mar; 21(5):5974-87. PubMed ID: 23482166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defects evaluation system for spherical optical surfaces based on microscopic scattering dark-field imaging method.
    Zhang Y; Yang Y; Li C; Wu F; Chai H; Yan K; Zhou L; Li Y; Liu D; Bai J; Shen Y
    Appl Opt; 2016 Aug; 55(23):6162-71. PubMed ID: 27534456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a confocal line-scan laser scattering probe for dark-field surface defects detection of transmissive optics.
    Dong J; Chang K; Tian Z; Zhang T; Lang X; Zhang Y; Lu R; Xie X
    Rev Sci Instrum; 2022 Aug; 93(8):083703. PubMed ID: 36050082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flying spot laser triangulation scanner using lateral synchronization for surface profile precision measurement.
    Zhang H; Ren Y; Liu C; Zhu J
    Appl Opt; 2014 Jul; 53(20):4405-12. PubMed ID: 25090059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic scratch detector for optical surface.
    Zhang HY; Wang ZH; Fu HY
    Opt Express; 2019 Jul; 27(15):20910-20927. PubMed ID: 31510178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Stitching Method for Dark-Field Surface Defects Inspection Based on Simplified Target-Tracking and Path Correction.
    Chen X; Li J; Sui Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31941133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aperture design for a dark-field wafer defect inspection system.
    Liu C; Xu S; Liu Y; Xiao Z
    Appl Opt; 2021 Dec; 60(35):10830-10837. PubMed ID: 35200843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Telecentric three-dimensional sensor with a liquid mirror for large-object inspection.
    Thibault S; Borra EF
    Appl Opt; 1999 Oct; 38(28):5962-7. PubMed ID: 18324115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vision system with high dynamic range for optical surface defect inspection.
    Cao Z; Cui F; Zhai C
    Appl Opt; 2018 Dec; 57(34):9981-9987. PubMed ID: 30645259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast path planning algorithm for large-aperture aspheric optical elements based on minimum object depth and a self-optimized overlap coefficient.
    Wang F; Yang Y; Lou W
    Appl Opt; 2022 Apr; 61(11):3123-3133. PubMed ID: 35471288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the laser generated focused-Lamb wave for non-contact imaging of defects in plate.
    Jhang KY; Shin MJ; Lim BO
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1265-8. PubMed ID: 16806358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual beam laser diode scanning system for ultrahigh speed laser beam printers using a spot control method.
    Arimoto A; Saitoh S; Mochizuki T; Kikuchi Y; Hatazawa K
    Appl Opt; 1987 Jul; 26(13):2554-7. PubMed ID: 20489918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical computed tomography utilizing a rotating mirror and Fresnel lenses: operating principles and preliminary results.
    Xu Y; Wuu CS
    Phys Med Biol; 2013 Feb; 58(3):479-95. PubMed ID: 23302492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and precise characterization of sub-µm surface defects using laser scatterometer devising a polygonal-shaped waveguide with double-slit aperture.
    Dung VT; Kim H; Lee J
    Opt Express; 2019 Dec; 27(25):36923-36931. PubMed ID: 31873463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase defect detection of large-aperture optics with static multiplanar coherent diffraction imaging.
    Wang H; Li Y; Jiao Z; Zhang J; Sun M; Zhu J
    Appl Opt; 2020 May; 59(14):4314-4320. PubMed ID: 32400407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast and reliable readout method for quantitative analysis of surface-enhanced Raman scattering nanoprobes on chip surface.
    Chang H; Kang H; Jeong S; Ko E; Lee YS; Lee HY; Jeong DH
    Rev Sci Instrum; 2015 May; 86(5):055004. PubMed ID: 26026551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 7.5-MHz data-transfer rate with a planar aperture mounted upon a near-field optical slider.
    Yoshikawa H; Andoh Y; Yamamoto M; Fukuzawa K; Tamamura T; Ohkubo T
    Opt Lett; 2000 Jan; 25(1):67-9. PubMed ID: 18059784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beam pen lithography based on focused laser diode beam with single microlens fabricated by excimer laser.
    Hasan MN; Lee YC
    Opt Express; 2015 Feb; 23(4):4494-505. PubMed ID: 25836486
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.