These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 29048171)

  • 1. AFM Colloidal Probe Measurements Implicate Capillary Condensation in Punch-Particle Surface Interactions during Tableting.
    Badal Tejedor M; Nordgren N; Schuleit M; Millqvist-Fureby A; Rutland MW
    Langmuir; 2017 Nov; 33(46):13180-13188. PubMed ID: 29048171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tablet mechanics depend on nano and micro scale adhesion, lubrication and structure.
    Badal Tejedor M; Nordgren N; Schuleit M; Rutland MW; Millqvist-Fureby A
    Int J Pharm; 2015; 486(1-2):315-23. PubMed ID: 25841569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterising the surface adhesive behavior of tablet tooling components by atomic force microscopy.
    Bunker M; Zhang J; Blanchard R; Roberts CJ
    Drug Dev Ind Pharm; 2011 Aug; 37(8):875-85. PubMed ID: 21247374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The surface characterisation and comparison of two potential sub-micron, sugar bulking excipients for use in low-dose, suspension formulations in metered dose inhalers.
    James J; Crean B; Davies M; Toon R; Jinks P; Roberts CJ
    Int J Pharm; 2008 Sep; 361(1-2):209-21. PubMed ID: 18577435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A material sparing test to predict punch sticking during formulation development.
    Simmons DM; Gierer DS
    Drug Dev Ind Pharm; 2012 Sep; 38(9):1054-60. PubMed ID: 22181042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the Occurrence of Sticking during Tablet Production by Shear Testing of a Pharmaceutical Powder.
    Nakamura S; Otsuka N; Yoshino Y; Sakamoto T; Yuasa H
    Chem Pharm Bull (Tokyo); 2016; 64(5):512-6. PubMed ID: 27150485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study on the sticking tendency of ibuprofen and ibuprofen sodium dihydrate to differently coated tablet punches.
    Al-Karawi C; Leopold CS
    Eur J Pharm Biopharm; 2018 Jul; 128():107-118. PubMed ID: 29635014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cohesive-adhesive balances in dry powder inhaler formulations I: Direct quantification by atomic force microscopy.
    Begat P; Morton DA; Staniforth JN; Price R
    Pharm Res; 2004 Sep; 21(9):1591-7. PubMed ID: 15497684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Particle Surface Area and Adhesion Force in the Sticking Behavior of Pharmaceutical Powders.
    Capece M
    J Pharm Sci; 2019 Dec; 108(12):3803-3813. PubMed ID: 31473214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of single drug particle adhesion interactions using atomic force microscopy.
    Eve JK; Patel N; Luk SY; Ebbens SJ; Roberts CJ
    Int J Pharm; 2002 May; 238(1-2):17-27. PubMed ID: 11996807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluidity and tableting characteristics of a powder solid dispersion of the low melting drugs ketoprofen and ibuprofen with crospovidone.
    Shibata Y; Fujii M; Noda S; Kokudai M; Okada H; Kondoh M; Watanabe Y
    Drug Dev Ind Pharm; 2006 Apr; 32(4):449-56. PubMed ID: 16638683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence-based nanoscopic and molecular framework for excipient functionality in compressed orally disintegrating tablets.
    Al-Khattawi A; Alyami H; Townsend B; Ma X; Mohammed AR
    PLoS One; 2014; 9(7):e101369. PubMed ID: 25025427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of dry powder inhaler formulations using atomic force microscopy.
    Weiss C; McLoughlin P; Cathcart H
    Int J Pharm; 2015 Oct; 494(1):393-407. PubMed ID: 26302859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compression physics in the formulation development of tablets.
    Patel S; Kaushal AM; Bansal AK
    Crit Rev Ther Drug Carrier Syst; 2006; 23(1):1-65. PubMed ID: 16749898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine powder flow under humid environmental conditions from the perspective of surface energy.
    Karde V; Ghoroi C
    Int J Pharm; 2015 May; 485(1-2):192-201. PubMed ID: 25772418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of adhesion in tablet compression--I. Atomic force microscopy and molecular simulation.
    Wang JJ; Li T; Bateman SD; Erck R; Morris KR
    J Pharm Sci; 2003 Apr; 92(4):798-814. PubMed ID: 12661065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating Sticking Propensity of Pharmaceuticals Through Excipient Selection in a Direct Compression Tablet Formulation.
    Paul S; Sun CC
    Pharm Res; 2018 Mar; 35(6):113. PubMed ID: 29603027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Milling induced amorphisation and recrystallization of α-lactose monohydrate.
    Badal Tejedor M; Pazesh S; Nordgren N; Schuleit M; Rutland MW; Alderborn G; Millqvist-Fureby A
    Int J Pharm; 2018 Feb; 537(1-2):140-147. PubMed ID: 29262302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis of crystal morphology-dependent adhesion behavior of mefenamic acid during tableting.
    Waknis V; Chu E; Schlam R; Sidorenko A; Badawy S; Yin S; Narang AS
    Pharm Res; 2014 Jan; 31(1):160-72. PubMed ID: 23943544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of drug particle surface energetics and young's modulus by atomic force microscopy and inverse gas chromatography.
    Davies M; Brindley A; Chen X; Marlow M; Doughty SW; Shrubb I; Roberts CJ
    Pharm Res; 2005 Jul; 22(7):1158-66. PubMed ID: 16028017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.