BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 29048223)

  • 1. Laboratory Investigations on the Survival of Bacillus subtilis Spores in Deliquescent Salt Mars Analog Environments.
    Nuding DL; Gough RV; Venkateswaran KJ; Spry JA; Tolbert MA
    Astrobiology; 2017 Oct; 17(10):997-1008. PubMed ID: 29048223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia.
    Nicholson WL; Schuerger AC
    Astrobiology; 2005 Aug; 5(4):536-44. PubMed ID: 16078870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments.
    Nagler K; Julius C; Moeller R
    Astrobiology; 2016 Jul; 16(7):500-12. PubMed ID: 27304705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Photochemistry of Unprotected DNA and DNA inside Bacillus subtilis Spores Exposed to Simulated Martian Surface Conditions of Atmospheric Composition, Temperature, Pressure, and Solar Radiation.
    Nicholson WL; Schuerger AC; Douki T
    Astrobiology; 2018 Apr; 18(4):393-402. PubMed ID: 29589975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survival and germinability of Bacillus subtilis spores exposed to simulated Mars solar radiation: implications for life detection and planetary protection.
    Tauscher C; Schuerger AC; Nicholson WL
    Astrobiology; 2006 Aug; 6(4):592-605. PubMed ID: 16916285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars.
    Vakkada Ramachandran A; Zorzano MP; Martín-Torres J
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evidence for the formation of liquid saline water on Mars.
    Fischer E; Martínez GM; Elliott HM; Rennó NO
    Geophys Res Lett; 2014 Jul; 41(13):4456-4462. PubMed ID: 25821267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PELS (Planetary Environmental Liquid Simulator): a new type of simulation facility to study extraterrestrial aqueous environments.
    Martin D; Cockell CS
    Astrobiology; 2015 Feb; 15(2):111-8. PubMed ID: 25651097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypotheses for Near-Surface Exchange of Methane on Mars.
    Hu R; Bloom AA; Gao P; Miller CE; Yung YL
    Astrobiology; 2016 Jul; 16(7):539-50. PubMed ID: 27315136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E.
    Wassmann M; Moeller R; Rabbow E; Panitz C; Horneck G; Reitz G; Douki T; Cadet J; Stan-Lotter H; Cockell CS; Rettberg P
    Astrobiology; 2012 May; 12(5):498-507. PubMed ID: 22680695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanogenic Archaea Can Produce Methane in Deliquescence-Driven Mars Analog Environments.
    Maus D; Heinz J; Schirmack J; Airo A; Kounaves SP; Wagner D; Schulze-Makuch D
    Sci Rep; 2020 Jan; 10(1):6. PubMed ID: 31913316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hygroscopic salts and the potential for life on Mars.
    Davila AF; Duport LG; Melchiorri R; Jänchen J; Valea S; de Los Rios A; Fairén AG; Möhlmann D; McKay CP; Ascaso C; Wierzchos J
    Astrobiology; 2010; 10(6):617-28. PubMed ID: 20735252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars.
    Schuerger AC; Mancinelli RL; Kern RG; Rothschild LJ; McKay CP
    Icarus; 2003 Oct; 165(2):253-76. PubMed ID: 14649627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and Persistence of Brine on Mars: Experimental Simulations throughout the Diurnal Cycle at the Phoenix Landing Site.
    Fischer E; Martínez GM; Rennó NO
    Astrobiology; 2016 Dec; 16(12):937-948. PubMed ID: 27912028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial Growth in Brines Formed by the Deliquescence of Salts Relevant to Cold Arid Worlds.
    Cesur RM; Ansari IM; Chen F; Clark BC; Schneegurt MA
    Astrobiology; 2022 Jan; 22(1):104-115. PubMed ID: 34748403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt Tolerance and UV Protection of
    Godin PJ; Schuerger AC; Moores JE
    Astrobiology; 2021 Apr; 21(4):394-404. PubMed ID: 33237800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial Communities in Saltpan Sediments Show Tolerance to Mars Analog Conditions, but Susceptibility to Chloride and Perchlorate Toxicity.
    Weingarten EA; Zee PC; Jackson CR
    Astrobiology; 2022 Jul; 22(7):838-850. PubMed ID: 35731161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of microorganisms to a simulated Martian environment.
    Hawrylewicz EJ; Hagen CA; Ehrlich R
    Life Sci Space Res; 1965; 3():64-73. PubMed ID: 12035808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistence of biomarker ATP and ATP-generating capability in bacterial cells and spores contaminating spacecraft materials under earth conditions and in a simulated martian environment.
    Fajardo-Cavazos P; Schuerger AC; Nicholson WL
    Appl Environ Microbiol; 2008 Aug; 74(16):5159-67. PubMed ID: 18567687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can Halophilic and Psychrophilic Microorganisms Modify the Freezing/Melting Curve of Cold Salty Solutions? Implications for Mars Habitability.
    Garcia-Descalzo L; Gil-Lozano C; Muñoz-Iglesias V; Prieto-Ballesteros O; Azua-Bustos A; Fairén AG
    Astrobiology; 2020 Sep; 20(9):1067-1075. PubMed ID: 32833498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.