These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29048394)

  • 1. Photoplethysmography Signal Analysis for Optimal Region-of-Interest Determination in Video Imaging on a Built-In Smartphone under Different Conditions.
    Nam Y; Nam YC
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29048394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory rate estimation from the built-in cameras of smartphones and tablets.
    Nam Y; Lee J; Chon KH
    Ann Biomed Eng; 2014 Apr; 42(4):885-98. PubMed ID: 24271263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting and Postexercise Heart Rate Detection From Fingertip and Facial Photoplethysmography Using a Smartphone Camera: A Validation Study.
    Yan BP; Chan CK; Li CK; To OT; Lai WH; Tse G; Poh YC; Poh MZ
    JMIR Mhealth Uhealth; 2017 Mar; 5(3):e33. PubMed ID: 28288955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smartphone-based photoplethysmographic imaging for heart rate monitoring.
    Alafeef M
    J Med Eng Technol; 2017 Jul; 41(5):387-395. PubMed ID: 28300460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of acquisition frame-rate and video compression techniques on pulse-rate variability estimation from vPPG signal.
    Cerina L; Iozzia L; Mainardi L
    Biomed Tech (Berl); 2019 Feb; 64(1):53-65. PubMed ID: 29135450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Pulse Rate Estimation Algorithm Using PPG and Smartphone Camera.
    Siddiqui SA; Zhang Y; Feng Z; Kos A
    J Med Syst; 2016 May; 40(5):126. PubMed ID: 27067432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel diversity method for smartphone camera-based heart rhythm signals in the presence of motion and noise artifacts.
    Tabei F; Zaman R; Foysal KH; Kumar R; Kim Y; Chong JW
    PLoS One; 2019; 14(6):e0218248. PubMed ID: 31216314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal quality measures for pulse oximetry through waveform morphology analysis.
    Sukor JA; Redmond SJ; Lovell NH
    Physiol Meas; 2011 Mar; 32(3):369-84. PubMed ID: 21330696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iPhone 4s photoplethysmography: which light color yields the most accurate heart rate and normalized pulse volume using the iPhysioMeter Application in the presence of motion artifact?
    Matsumura K; Rolfe P; Lee J; Yamakoshi T
    PLoS One; 2014; 9(3):e91205. PubMed ID: 24618594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comb filter based signal processing method to effectively reduce motion artifacts from photoplethysmographic signals.
    Peng F; Liu H; Wang W
    Physiol Meas; 2015 Oct; 36(10):2159-70. PubMed ID: 26334000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Personalized Motion and Noise Artifact (MNA) Detection Method for Smartphone Photoplethysmograph (PPG) Signals.
    Tabei F; Kumar R; Phan TN; McManus DD; Chong JW
    IEEE Access; 2018; 6():60498-60512. PubMed ID: 31263653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features.
    Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH
    IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating a smartphone imaging unit for photoplethysmography.
    Jonathan E; Leahy M
    Physiol Meas; 2010 Nov; 31(11):N79-83. PubMed ID: 20871134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW
    Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adapting smartphone-based photoplethysmograpy to suboptimal scenarios.
    Garcia-Agundez A; Dutz T; Goebel S
    Physiol Meas; 2017 Feb; 38(2):219-232. PubMed ID: 28099163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection-reduction approach. Part I: Motion and noise artifact detection.
    Chong JW; Dao DK; Salehizadeh SM; McManus DD; Darling CE; Chon KH; Mendelson Y
    Ann Biomed Eng; 2014 Nov; 42(11):2238-50. PubMed ID: 25092422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smartphone PPG: signal processing, quality assessment, and impact on HRV parameters.
    Tyapochkin K; Smorodnikova E; Pravdin P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4237-4240. PubMed ID: 31946804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waveform Analysis for Camera-based Photoplethysmography Imaging.
    Paul M; Yu X; Wu B; Weiss C; Antink CH; Blazek V; Leonhardt S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2713-2718. PubMed ID: 31946455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instant Stress: Detection of Perceived Mental Stress Through Smartphone Photoplethysmography and Thermal Imaging.
    Cho Y; Julier SJ; Bianchi-Berthouze N
    JMIR Ment Health; 2019 Apr; 6(4):e10140. PubMed ID: 30964440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ballistocardiographic Artifacts in PPG Imaging.
    Moco AV; Stuijk S; de Haan G
    IEEE Trans Biomed Eng; 2016 Sep; 63(9):1804-1811. PubMed ID: 26599525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.