These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29048486)

  • 1. Cancer progression models and fitness landscapes: a many-to-many relationship.
    Diaz-Uriarte R
    Bioinformatics; 2018 Mar; 34(5):836-844. PubMed ID: 29048486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Every which way? On predicting tumor evolution using cancer progression models.
    Diaz-Uriarte R; Vasallo C
    PLoS Comput Biol; 2019 Aug; 15(8):e1007246. PubMed ID: 31374072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OncoSimulR: genetic simulation with arbitrary epistasis and mutator genes in asexual populations.
    Diaz-Uriarte R
    Bioinformatics; 2017 Jun; 33(12):1898-1899. PubMed ID: 28186227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Complexity as an Ultimate Constraint on Evolution.
    Kaznatcheev A
    Genetics; 2019 May; 212(1):245-265. PubMed ID: 30833289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring epistasis in fitness landscapes: The correlation of fitness effects of mutations.
    Ferretti L; Schmiegelt B; Weinreich D; Yamauchi A; Kobayashi Y; Tajima F; Achaz G
    J Theor Biol; 2016 May; 396():132-43. PubMed ID: 26854875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The peaks and geometry of fitness landscapes.
    Crona K; Greene D; Barlow M
    J Theor Biol; 2013 Jan; 317():1-10. PubMed ID: 23036916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditional prediction of consecutive tumor evolution using cancer progression models: What genotype comes next?
    Diaz-Colunga J; Diaz-Uriarte R
    PLoS Comput Biol; 2021 Dec; 17(12):e1009055. PubMed ID: 34932572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genotypic Complexity of Fisher's Geometric Model.
    Hwang S; Park SC; Krug J
    Genetics; 2017 Jun; 206(2):1049-1079. PubMed ID: 28450460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometry of fitness landscapes: peaks, shapes and universal positive epistasis.
    Crona K; Krug J; Srivastava M
    J Math Biol; 2023 Mar; 86(4):62. PubMed ID: 36976406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the incongruence of genotype-phenotype and fitness landscapes.
    Srivastava M; Payne JL
    PLoS Comput Biol; 2022 Sep; 18(9):e1010524. PubMed ID: 36121840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the effect of sex on empirical fitness landscapes.
    de Visser JA; Park SC; Krug J
    Am Nat; 2009 Jul; 174 Suppl 1():S15-30. PubMed ID: 19456267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rank ordering of genotypic fitness values predicts genetic constraint on natural selection on landscapes lacking sign epistasis.
    Weinreich DM
    Genetics; 2005 Nov; 171(3):1397-405. PubMed ID: 16079241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating Evolution in Asexual Populations with Epistasis.
    Diaz-Uriarte R
    Methods Mol Biol; 2021; 2212():121-154. PubMed ID: 33733354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CAPRI: efficient inference of cancer progression models from cross-sectional data.
    Ramazzotti D; Caravagna G; Olde Loohuis L; Graudenzi A; Korsunsky I; Mauri G; Antoniotti M; Mishra B
    Bioinformatics; 2015 Sep; 31(18):3016-26. PubMed ID: 25971740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes.
    Poelwijk FJ; Tănase-Nicola S; Kiviet DJ; Tans SJ
    J Theor Biol; 2011 Mar; 272(1):141-4. PubMed ID: 21167837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fitness landscapes emerging from pharmacodynamic functions in the evolution of multidrug resistance.
    Engelstädter J
    J Evol Biol; 2014 May; 27(5):840-53. PubMed ID: 24720850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple peaks and reciprocal sign epistasis in an empirically determined genotype-phenotype landscape.
    Dawid A; Kiviet DJ; Kogenaru M; de Vos M; Tans SJ
    Chaos; 2010 Jun; 20(2):026105. PubMed ID: 20590334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of epistatic interactions and fitness landscapes using a new geometric approach.
    Beerenwinkel N; Pachter L; Sturmfels B; Elena SF; Lenski RE
    BMC Evol Biol; 2007 Apr; 7():60. PubMed ID: 17433106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global epistasis on fitness landscapes.
    Diaz-Colunga J; Skwara A; Gowda K; Diaz-Uriarte R; Tikhonov M; Bajic D; Sanchez A
    Philos Trans R Soc Lond B Biol Sci; 2023 May; 378(1877):20220053. PubMed ID: 37004717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Valley-of-Death: reciprocal sign epistasis constrains adaptive trajectories in a constant, nutrient limiting environment.
    Chiotti KE; Kvitek DJ; Schmidt KH; Koniges G; Schwartz K; Donckels EA; Rosenzweig F; Sherlock G
    Genomics; 2014 Dec; 104(6 Pt A):431-7. PubMed ID: 25449178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.