BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29048530)

  • 1. Population Genomic Analysis of a Pitviper Reveals Microevolutionary Forces Underlying Venom Chemistry.
    Aird SD; Arora J; Barua A; Qiu L; Terada K; Mikheyev AS
    Genome Biol Evol; 2017 Oct; 9(10):2640-2649. PubMed ID: 29048530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly.
    Aird SD; Aggarwal S; Villar-Briones A; Tin MM; Terada K; Mikheyev AS
    BMC Genomics; 2015 Aug; 16():647. PubMed ID: 26315097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diet and snake venom evolution.
    Daltry JC; Wüster W; Thorpe RS
    Nature; 1996 Feb; 379(6565):537-40. PubMed ID: 8596631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis).
    Pla D; Sanz L; Sasa M; Acevedo ME; Dwyer Q; Durban J; Pérez A; Rodriguez Y; Lomonte B; Calvete JJ
    J Proteomics; 2017 Jan; 152():1-12. PubMed ID: 27777178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the Evolution of a Snake Venom Multi-Gene Family from the Genomic Organization of Echis ocellatus SVMP Genes.
    Sanz L; Calvete JJ
    Toxins (Basel); 2016 Jul; 8(7):. PubMed ID: 27420095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning of Echis ocellatus disintegrins reveals non-venom-secreted proteins and a pathway for the evolution of ocellatusin.
    Juárez P; Wagstaff SC; Sanz L; Harrison RA; Calvete JJ
    J Mol Evol; 2006 Aug; 63(2):183-93. PubMed ID: 16830094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers.
    Jansa SA; Voss RS
    PLoS One; 2011; 6(6):e20997. PubMed ID: 21731638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Snake C-Type Lectins Potentially Contribute to the Prey Immobilization in
    Tian H; Liu M; Li J; Xu R; Long C; Li H; Mwangi J; Lu Q; Lai R; Shen C
    Toxins (Basel); 2020 Feb; 12(2):. PubMed ID: 32041262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution.
    Barlow A; Pook CE; Harrison RA; Wüster W
    Proc Biol Sci; 2009 Jul; 276(1666):2443-9. PubMed ID: 19364745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of snake venom disintegrins by positive Darwinian selection.
    Juárez P; Comas I; González-Candelas F; Calvete JJ
    Mol Biol Evol; 2008 Nov; 25(11):2391-407. PubMed ID: 18701431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic and toxicological profiling of the venom of Bothrocophias campbelli, a pitviper species from Ecuador and Colombia.
    Salazar-Valenzuela D; Mora-Obando D; Fernández ML; Loaiza-Lange A; Gibbs HL; Lomonte B
    Toxicon; 2014 Nov; 90():15-25. PubMed ID: 25091349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence diversity of Vipera lebetina snake venom gland serine proteinase homologs--result of alternative-splicing or genome alteration.
    Siigur E; Aaspõllu A; Siigur J
    Gene; 2001 Jan; 263(1-2):199-203. PubMed ID: 11223258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De Novo Genome Assembly Highlights the Role of Lineage-Specific Gene Duplications in the Evolution of Venom in Fea's Viper (Azemiops feae).
    Myers EA; Strickland JL; Rautsaw RM; Mason AJ; Schramer TD; Nystrom GS; Hogan MP; Yooseph S; Rokyta DR; Parkinson CL
    Genome Biol Evol; 2022 Jul; 14(7):. PubMed ID: 35670514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Venom gland EST analysis of the saw-scaled viper, Echis ocellatus, reveals novel alpha9beta1 integrin-binding motifs in venom metalloproteinases and a new group of putative toxins, renin-like aspartic proteases.
    Wagstaff SC; Harrison RA
    Gene; 2006 Aug; 377():21-32. PubMed ID: 16713134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Snake venomics of Bitis species reveals large intragenus venom toxin composition variation: application to taxonomy of congeneric taxa.
    Calvete JJ; Escolano J; Sanz L
    J Proteome Res; 2007 Jul; 6(7):2732-45. PubMed ID: 17559253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of balancing selection and recombination in the evolution of rattlesnake venom.
    Schield DR; Perry BW; Adams RH; Holding ML; Nikolakis ZL; Gopalan SS; Smith CF; Parker JM; Meik JM; DeGiorgio M; Mackessy SP; Castoe TA
    Nat Ecol Evol; 2022 Sep; 6(9):1367-1380. PubMed ID: 35851850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Proteomic Analysis of Venoms from Russian Vipers of Pelias Group: Phospholipases A₂ are the Main Venom Components.
    Kovalchuk SI; Ziganshin RH; Starkov VG; Tsetlin VI; Utkin YN
    Toxins (Basel); 2016 Apr; 8(4):105. PubMed ID: 27077884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated evolution of toxin genes: Exonization and intronization in snake venom disintegrin/metalloprotease genes.
    Kini RM
    Toxicon; 2018 Jun; 148():16-25. PubMed ID: 29634956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated exchange of exon segments in Viperid three-finger toxin genes (Sistrurus catenatus edwardsii; Desert Massasauga).
    Doley R; Pahari S; Mackessy SP; Kini RM
    BMC Evol Biol; 2008 Jul; 8():196. PubMed ID: 18606022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine-rich venom proteins from the snakes of Viperinae subfamily - molecular cloning and phylogenetic relationship.
    Ramazanova AS; Starkov VG; Osipov AV; Ziganshin RH; Filkin SY; Tsetlin VI; Utkin YN
    Toxicon; 2009 Jan; 53(1):162-8. PubMed ID: 19041663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.