These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

909 related articles for article (PubMed ID: 29048758)

  • 21. Alpine butterflies want to fly high: Species and communities shift upwards faster than their host plants.
    Kerner JM; Krauss J; Maihoff F; Bofinger L; Classen A
    Ecology; 2023 Jan; 104(1):e3848. PubMed ID: 36366785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A specialist bee and its host plants experience phenological shifts at different rates in response to climate change.
    Weaver SA; Mallinger RE
    Ecology; 2022 May; 103(5):e3658. PubMed ID: 35129842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contribution of urban expansion and a changing climate to decline of a butterfly fauna.
    Casner KL; Forister ML; O'Brien JM; Thorne J; Waetjen D; Shapiro AM
    Conserv Biol; 2014 Jun; 28(3):773-82. PubMed ID: 24527888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct latitudinal patterns of shifting spring phenology across the Appalachian Trail Corridor.
    Tourville JC; Murray GLD; Nelson SJ
    Ecology; 2024 Oct; 105(10):e4403. PubMed ID: 39205387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees.
    Schwartzberg EG; Jamieson MA; Raffa KF; Reich PB; Montgomery RA; Lindroth RL
    Oecologia; 2014 Jul; 175(3):1041-9. PubMed ID: 24889969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intra- and interspecific variation in the responses of insect phenology to climate.
    Gutiérrez D; Wilson RJ
    J Anim Ecol; 2021 Jan; 90(1):248-259. PubMed ID: 32961581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the universal ecological responses to climate change in a univoltine butterfly.
    Fenberg PB; Self A; Stewart JR; Wilson RJ; Brooks SJ
    J Anim Ecol; 2016 May; 85(3):739-48. PubMed ID: 26876243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variation in two phases of post-winter development of a butterfly.
    Stålhandske S; Gotthard K; Posledovich D; Leimar O
    J Evol Biol; 2014 Dec; 27(12):2644-53. PubMed ID: 25345727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Climate warming changes synchrony of plants and pollinators.
    Freimuth J; Bossdorf O; Scheepens JF; Willems FM
    Proc Biol Sci; 2022 Mar; 289(1971):20212142. PubMed ID: 35350857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plant phenological synchrony increases under rapid within-spring warming.
    Wang C; Tang Y; Chen J
    Sci Rep; 2016 May; 6():25460. PubMed ID: 27145698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phenotypic biomarkers of climatic impacts on declining insect populations: A key role for decadal drought, thermal buffering and amplification effects and host plant dynamics.
    Carnicer J; Stefanescu C; Vives-Ingla M; López C; Cortizas S; Wheat C; Vila R; Llusià J; Peñuelas J
    J Anim Ecol; 2019 Mar; 88(3):376-391. PubMed ID: 30480313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature-dependent alterations in host use drive rapid range expansion in a butterfly.
    Pateman RM; Hill JK; Roy DB; Fox R; Thomas CD
    Science; 2012 May; 336(6084):1028-30. PubMed ID: 22628653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps.
    Vitasse Y; Ursenbacher S; Klein G; Bohnenstengel T; Chittaro Y; Delestrade A; Monnerat C; Rebetez M; Rixen C; Strebel N; Schmidt BR; Wipf S; Wohlgemuth T; Yoccoz NG; Lenoir J
    Biol Rev Camb Philos Soc; 2021 Oct; 96(5):1816-1835. PubMed ID: 33908168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenology in a warming world: differences between native and non-native plant species.
    Zettlemoyer MA; Schultheis EH; Lau JA
    Ecol Lett; 2019 Aug; 22(8):1253-1263. PubMed ID: 31134712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why stay in a bad relationship? The effect of local host phenology on a generalist butterfly feeding on a low-ranked host.
    Audusseau H; de la Paz Celorio-Mancera M; Janz N; Nylin S
    BMC Evol Biol; 2016 Jun; 16(1):144. PubMed ID: 27356867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A natural heating experiment: Phenotypic and genotypic responses of plant phenology to geothermal soil warming.
    Valdés A; Marteinsdóttir B; Ehrlén J
    Glob Chang Biol; 2019 Mar; 25(3):954-962. PubMed ID: 30430704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spring warming increases the abundance of an invasive specialist insect: links to phenology and life history.
    Ju RT; Gao L; Wei SJ; Li B
    Sci Rep; 2017 Nov; 7(1):14805. PubMed ID: 29093523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Larval parasitism in a specialist herbivore is explained by phenological synchrony and host plant availability.
    Stefanescu C; Colom P; Barea-Azcón JM; Horsfield D; Komac B; Miralles A; Shaw MR; Ubach A; Gutiérrez D
    J Anim Ecol; 2022 May; 91(5):1010-1023. PubMed ID: 35297500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting the sensitivity of butterfly phenology to temperature over the past century.
    Kharouba HM; Paquette SR; Kerr JT; Vellend M
    Glob Chang Biol; 2014 Feb; 20(2):504-14. PubMed ID: 24249425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.