These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29048833)

  • 1. [New
    Chen L; Cheng L; He S; He Y; Wu Y; Ke Y; Liang X
    Se Pu; 2017 Jul; 35(7):703-711. PubMed ID: 29048833
    [No Abstract]   [Full Text] [Related]  

  • 2. A novel C
    Zhu J; Zhu L; Wu Y; Cheng L; Wang H; Sun X; Shen J; Zhou Y; Ke Y
    J Sep Sci; 2020 Jun; 43(12):2338-2348. PubMed ID: 32216077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid chromatographic resolution of proline and pipecolic acid derivatives on chiral stationary phases based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid.
    Cho ES; Sung JY; Jin JS; Hyun MH
    J Sep Sci; 2018 Mar; 41(6):1192-1198. PubMed ID: 29044998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doubly tethered tertiary amide linked and ionically bonded diproline chiral stationary phases.
    Lao W; Gan J
    J Sep Sci; 2009 Jul; 32(14):2359-68. PubMed ID: 19551740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioseparation performance of novel benzimido-β-cyclodextrins derivatized by ionic liquids as chiral stationary phases.
    Li X; Zhou Z
    Anal Chim Acta; 2014 Mar; 819():122-9. PubMed ID: 24636420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interactions between chiral analytes and chitosan-based chiral stationary phases during enantioseparation.
    Chen W; Jiang JZ; Qiu GS; Tang S; Bai ZW
    J Chromatogr A; 2021 Aug; 1650():462259. PubMed ID: 34090134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of proline chiral stationary phases by varying peptide length and linker.
    Huang J; Chen H; Li T
    J Chromatogr A; 2006 Apr; 1113(1-2):109-15. PubMed ID: 16563406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioseparation characteristics of the chiral stationary phases based on natural and regenerated chitins.
    Mei XM; Chen W; Bai ZW
    J Sep Sci; 2017 Apr; 40(8):1710-1717. PubMed ID: 28225215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steric effects on the enantiodiscrimination of diproline chiral stationary phases in the resolution of racemic compounds.
    Dai Z; Ye G; Pittman CU; Li T
    J Chromatogr A; 2011 Aug; 1218(32):5498-503. PubMed ID: 21741656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative HPLC enantioseparation on substituted phenylcarbamoylated cyclodextrin chiral stationary phases and mobile phase effects.
    Lin C; Fan J; Liu WN; Tan Y; Zhang WG
    J Pharm Biomed Anal; 2014 Sep; 98():221-7. PubMed ID: 24937808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A (4R)-hydroxy-L-proline-derived chiral scaffold and its oligomers as chiral selectors in liquid chromatography chiral stationary phases for enantioseparation.
    Sancho R; Pérez AM; Minguillón C
    J Sep Sci; 2006 Apr; 29(6):905-14. PubMed ID: 16830502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of triproline and tri-alpha-methylproline chiral stationary phases: retention and enantioseparation associated with hydrogen bonding.
    Lao W; Gan J
    J Chromatogr A; 2009 Jun; 1216(25):5020-9. PubMed ID: 19446822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The degree of substitution affects the enantioselectivity of sulfobutylether-β-cyclodextrin chiral stationary phases.
    Folprechtová D; Kalíková K; Kozlík P; Tesařová E
    Electrophoresis; 2019 Aug; 40(15):1972-1977. PubMed ID: 30671992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and application of mono-2A-azido-2A-deoxyperphenylcarbamoylated beta-cyclodextrin and mono-2A-azido-2A-deoxyperacetylated beta-cyclodextrin as chiral stationary phases for high-performance liquid chromatography.
    Poon YF; Muderawan IW; Ng SC
    J Chromatogr A; 2006 Jan; 1101(1-2):185-97. PubMed ID: 16236286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Octaproline, a conformationally flexible chiral selector in liquid chromatographic enantioseparation.
    Novell A; Minguillón C
    J Chromatogr A; 2014 Oct; 1363():109-18. PubMed ID: 24861785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral separation of selected proline derivatives using a polysaccharide-type stationary phase by supercritical fluid chromatography and comparison with high-performance liquid chromatography.
    Zhao Y; Pritts WA; Zhang S
    J Chromatogr A; 2008 May; 1189(1-2):245-53. PubMed ID: 18054949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new single-urea-bound 3,5-dimethylphenylcarbamoylated β-cyclodextrin chiral stationary phase and its enhanced separation performance in normal-phase liquid chromatography.
    Lin C; Fan J; Liu W; Chen X; Ruan L; Zhang W
    Electrophoresis; 2018 Jan; 39(2):348-355. PubMed ID: 29044568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of novel chiral imidazolium stationary phases and their enantioseparation evaluation by high-performance liquid chromatography.
    Wang T; Yang H; Qiu R; Huang S
    Anal Chim Acta; 2016 Nov; 944():70-77. PubMed ID: 27776641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of chiral recognition in the enantioseparation of 2-aryloxypropionic acids on new brush-type chiral stationary phases.
    Vinkovic V; Kontrec D; Sunjic V; Navarini L; Zanetti F; Azzolina O
    Chirality; 2001; 13(9):581-7. PubMed ID: 11579453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral separation of new designer drugs (Cathinones) on chiral ion-exchange type stationary phases.
    Wolrab D; Frühauf P; Moulisová A; Kuchař M; Gerner C; Lindner W; Kohout M
    J Pharm Biomed Anal; 2016 Feb; 120():306-15. PubMed ID: 26765268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.