BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 29048949)

  • 21. Machine Learning Approaches to Predict Asthma Exacerbations: A Narrative Review.
    Molfino NA; Turcatel G; Riskin D
    Adv Ther; 2024 Feb; 41(2):534-552. PubMed ID: 38110652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predictive models for personalized asthma attacks based on patient's biosignals and environmental factors: a systematic review.
    Alharbi ET; Nadeem F; Cherif A
    BMC Med Inform Decis Mak; 2021 Dec; 21(1):345. PubMed ID: 34886852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The impact of obesity on immune function in pediatric asthma.
    Hay C; Henrickson SE
    Curr Opin Allergy Clin Immunol; 2021 Apr; 21(2):202-215. PubMed ID: 33620885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Omics Data Preprocessing for Machine Learning: A Case Study in Childhood Obesity.
    Torres-Martos Á; Bustos-Aibar M; Ramírez-Mena A; Cámara-Sánchez S; Anguita-Ruiz A; Alcalá R; Aguilera CM; Alcalá-Fdez J
    Genes (Basel); 2023 Jan; 14(2):. PubMed ID: 36833178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating Machine Learning Techniques for Predicting Risk of Asthma Exacerbations: A Systematic Review.
    Darsha Jayamini WK; Mirza F; Asif Naeem M; Chan AHY
    J Med Syst; 2024 May; 48(1):49. PubMed ID: 38739297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of childhood asthma prediction models using machine learning approaches.
    Kothalawala DM; Murray CS; Simpson A; Custovic A; Tapper WJ; Arshad SH; Holloway JW; Rezwan FI;
    Clin Transl Allergy; 2021 Nov; 11(9):e12076. PubMed ID: 34841728
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discovery of distinct cancer cachexia phenotypes using an unsupervised machine-learning algorithm.
    Wu HF; Yan JP; Wu Q; Yu Z; Xu HX; Song CH; Guo ZQ; Li W; Xiang YJ; Xu Z; Luo J; Cheng SQ; Zhang FM; Shi HP; Zhuang CL;
    Nutrition; 2024 Mar; 119():112317. PubMed ID: 38154396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developing a prediction model of children asthma risk using population-based family history health records.
    Hamad AF; Yan L; Jafari Jozani M; Hu P; Delaney JA; Lix LM
    Pediatr Allergy Immunol; 2023 Oct; 34(10):e14032. PubMed ID: 37877849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determining asthma endotypes and outcomes: Complementing existing clinical practice with modern machine learning.
    Ray A; Das J; Wenzel SE
    Cell Rep Med; 2022 Dec; 3(12):100857. PubMed ID: 36543110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cluster Analysis of Finnish Population-Based Adult-Onset Asthma Patients.
    Ilmarinen P; Julkunen-Iivari A; Lundberg M; Luukkainen A; Nuutinen M; Karjalainen J; Huhtala H; Pekkanen J; Kankaanranta H; Toppila-Salmi S
    J Allergy Clin Immunol Pract; 2023 Oct; 11(10):3086-3096. PubMed ID: 37268268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential Modulation of Mouse Intestinal Organoids with Fecal Luminal Factors from Obese, Allergic, Asthmatic Children.
    Córdova S; Tena-Garitaonaindia M; Álvarez-Mercado AI; Gámez-Belmonte R; Gómez-Llorente MA; Sánchez de Medina F; Martínez-Cañavate A; Martínez-Augustin O; Gómez-Llorente C
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38255939
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asthma prediction via affinity graph enhanced classifier: a machine learning approach based on routine blood biomarkers.
    Li D; Abhadiomhen SE; Zhou D; Shen XJ; Shi L; Cui Y
    J Transl Med; 2024 Jan; 22(1):100. PubMed ID: 38268004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of Allergic, Eosinophilic, and Overlapping Asthma Phenotypes Among Pediatric Patients with Current Asthma: A Cross-Sectional Study from Saudi Arabia.
    Asseri AA
    J Asthma Allergy; 2023; 16():1297-1308. PubMed ID: 38058515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a Computable Phenotype for Prehospital Pediatric Asthma Encounters.
    Harmon I; Brailsford J; Sanchez-Cano I; Fishe J
    Prehosp Emerg Care; 2024 May; ():1-12. PubMed ID: 38713633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data.
    Smith AM; Walsh JR; Long J; Davis CB; Henstock P; Hodge MR; Maciejewski M; Mu XJ; Ra S; Zhao S; Ziemek D; Fisher CK
    BMC Bioinformatics; 2020 Mar; 21(1):119. PubMed ID: 32197580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DISCOVERING PATIENT PHENOTYPES USING GENERALIZED LOW RANK MODELS.
    Schuler A; Liu V; Wan J; Callahan A; Udell M; Stark DE; Shah NH
    Pac Symp Biocomput; 2016; 21():144-55. PubMed ID: 26776181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Home monitoring with connected mobile devices for asthma attack prediction with machine learning.
    Tsang KCH; Pinnock H; Wilson AM; Salvi D; Shah SA
    Sci Data; 2023 Jun; 10(1):370. PubMed ID: 37291158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Batch normalization followed by merging is powerful for phenotype prediction integrating multiple heterogeneous studies.
    Gao Y; Sun F
    PLoS Comput Biol; 2023 Oct; 19(10):e1010608. PubMed ID: 37844077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry.
    Dhamala E; Yeo BTT; Holmes AJ
    Biol Psychiatry; 2023 Apr; 93(8):717-728. PubMed ID: 36577634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increasing the accuracy of the asthma diagnosis using an operational definition for asthma and a machine learning method.
    Joo H; Lee D; Lee SH; Kim YK; Rhee CK
    BMC Pulm Med; 2023 Jun; 23(1):196. PubMed ID: 37280559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.