These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 29049289)

  • 41. Dorsalization of the neural tube by Xenopus tiarin, a novel patterning factor secreted by the flanking nonneural head ectoderm.
    Tsuda H; Sasai N; Matsuo-Takasaki M; Sakuragi M; Murakami Y; Sasai Y
    Neuron; 2002 Feb; 33(4):515-28. PubMed ID: 11856527
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neural crest specification by Prohibitin1 depends on transcriptional regulation of prl3 and vangl1.
    Deichmann C; Link M; Seyfang M; Knotz V; Gradl D; Wedlich D
    Genesis; 2015 Oct; 53(10):627-39. PubMed ID: 26259516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sequence and developmental expression of AmphiDll, an amphioxus Distal-less gene transcribed in the ectoderm, epidermis and nervous system: insights into evolution of craniate forebrain and neural crest.
    Holland ND; Panganiban G; Henyey EL; Holland LZ
    Development; 1996 Sep; 122(9):2911-20. PubMed ID: 8787764
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Xenopus Nkx6.3 is a neural plate border specifier required for neural crest development.
    Zhang Z; Shi Y; Zhao S; Li J; Li C; Mao B
    PLoS One; 2014; 9(12):e115165. PubMed ID: 25531524
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos.
    Pegoraro C; Monsoro-Burq AH
    Wiley Interdiscip Rev Dev Biol; 2013; 2(2):247-59. PubMed ID: 24009035
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor.
    Brugmann SA; Pandur PD; Kenyon KL; Pignoni F; Moody SA
    Development; 2004 Dec; 131(23):5871-81. PubMed ID: 15525662
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A conserved role for non-neural ectoderm cells in early neural development.
    Cajal M; Creuzet SE; Papanayotou C; Sabéran-Djoneidi D; Chuva de Sousa Lopes SM; Zwijsen A; Collignon J; Camus A
    Development; 2014 Nov; 141(21):4127-38. PubMed ID: 25273086
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neural expression of the Xenopus homeobox gene Xhox3: evidence for a patterning neural signal that spreads through the ectoderm.
    Ruiz i Altaba A
    Development; 1990 Apr; 108(4):595-604. PubMed ID: 1974841
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neural crest and placode interaction during the development of the cranial sensory system.
    Steventon B; Mayor R; Streit A
    Dev Biol; 2014 May; 389(1):28-38. PubMed ID: 24491819
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Localization of cartilage linking protein 1 during primary neurulation in the chick embryo.
    Colas JF; Schoenwolf GC
    Brain Res Dev Brain Res; 2003 Mar; 141(1-2):141-8. PubMed ID: 12644258
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives.
    Rogers CD; Harafuji N; Archer T; Cunningham DD; Casey ES
    Mech Dev; 2009; 126(1-2):42-55. PubMed ID: 18992330
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Making a head: Neural crest and ectodermal placodes in cranial sensory development.
    Koontz A; Urrutia HA; Bronner ME
    Semin Cell Dev Biol; 2023 Mar; 138():15-27. PubMed ID: 35760729
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neural crest determination by co-activation of Pax3 and Zic1 genes in Xenopus ectoderm.
    Sato T; Sasai N; Sasai Y
    Development; 2005 May; 132(10):2355-63. PubMed ID: 15843410
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation.
    Chang C; Harland RM
    Development; 2007 Nov; 134(21):3861-72. PubMed ID: 17933792
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relationship between gene expression domains of Xsnail, Xslug, and Xtwist and cell movement in the prospective neural crest of Xenopus.
    Linker C; Bronner-Fraser M; Mayor R
    Dev Biol; 2000 Aug; 224(2):215-25. PubMed ID: 10926761
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Latrophilin2 is involved in neural crest cell migration and placode patterning in Xenopus laevis.
    Yokote N; Suzuki-Kosaka MY; Michiue T; Hara T; Tanegashima K
    Int J Dev Biol; 2019; 63(1-2):29-35. PubMed ID: 30919913
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Frizzled7 mediates canonical Wnt signaling in neural crest induction.
    Abu-Elmagd M; Garcia-Morales C; Wheeler GN
    Dev Biol; 2006 Oct; 298(1):285-98. PubMed ID: 16928367
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Apolipoprotein C-I mediates Wnt/Ctnnb1 signaling during neural border formation and is required for neural crest development.
    Yokota C; Åstrand C; Takahashi S; Hagey DW; Stenman JM
    Int J Dev Biol; 2017; 61(6-7):415-425. PubMed ID: 28695961
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Origin and segregation of cranial placodes in Xenopus laevis.
    Pieper M; Eagleson GW; Wosniok W; Schlosser G
    Dev Biol; 2011 Dec; 360(2):257-75. PubMed ID: 21989028
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Human neural crest induction by temporal modulation of WNT activation.
    Gomez GA; Prasad MS; Sandhu N; Shelar PB; Leung AW; García-Castro MI
    Dev Biol; 2019 May; 449(2):99-106. PubMed ID: 30826399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.