BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29049296)

  • 1. Genome-wide expression analysis of salt-stressed diploid and autotetraploid Paulownia tomentosa.
    Zhao Z; Li Y; Liu H; Zhai X; Deng M; Dong Y; Fan G
    PLoS One; 2017; 12(10):e0185455. PubMed ID: 29049296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Analysis and Identification of miRNAs and Their Target Genes Responsive to Salt Stress in Diploid and Tetraploid Paulownia fortunei Seedlings.
    Fan G; Li X; Deng M; Zhao Z; Yang L
    PLoS One; 2016; 11(2):e0149617. PubMed ID: 26894691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome-wide profiling and expression analysis of diploid and autotetraploid Paulownia tomentosa Ɨ Paulownia fortunei under drought stress.
    Xu E; Fan G; Niu S; Zhao Z; Deng M; Dong Y
    PLoS One; 2014; 9(11):e113313. PubMed ID: 25405758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome analysis of the variations between autotetraploid Paulownia tomentosa and its diploid using high-throughput sequencing.
    Fan G; Wang L; Deng M; Niu S; Zhao Z; Xu E; Cao X; Zhang X
    Mol Genet Genomics; 2015 Aug; 290(4):1627-38. PubMed ID: 25773315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative proteomic analysis of autotetraploid and diploid
    Yan L; Fan G; Deng M; Zhao Z; Dong Y; Li Y
    Physiol Mol Biol Plants; 2017 Jul; 23(3):605-617. PubMed ID: 28878499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the transcriptomes between diploid and autotetraploid
    Wang Z; Zhao Z; Fan G; Dong Y; Deng M; Xu E; Zhai X; Cao H
    Physiol Mol Biol Plants; 2019 Jan; 25(1):1-11. PubMed ID: 30804626
    [No Abstract]   [Full Text] [Related]  

  • 7. Changes in Transcript Related to Osmosis and Intracellular Ion Homeostasis in Paulownia tomentosa under Salt Stress.
    Fan G; Wang L; Deng M; Zhao Z; Dong Y; Zhang X; Li Y
    Front Plant Sci; 2016; 7():384. PubMed ID: 27066034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome and Degradome of microRNAs and Their Targets in Response to Drought Stress in the Plants of a Diploid and Its Autotetraploid Paulownia australis.
    Niu S; Wang Y; Zhao Z; Deng M; Cao L; Yang L; Fan G
    PLoS One; 2016; 11(7):e0158750. PubMed ID: 27388154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drought stress-induced changes of microRNAs in diploid and autotetraploid
    Cao X; Fan G; Cao L; Deng M; Zhao Z; Niu S; Wang Z; Wang Y
    Genes Genomics; 2017; 39(1):77-86. PubMed ID: 28090264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of genes related to the phenotypic variations of a synthesized Paulownia (Paulownia tomentosaƗPaulownia fortunei) autotetraploid.
    Li Y; Fan G; Dong Y; Zhao Z; Deng M; Cao X; Xu E; Niu S
    Gene; 2014 Dec; 553(2):75-83. PubMed ID: 25300252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome of Paulownia (Paulownia fortunei) illuminates the related transcripts, miRNA and proteins for salt resistance.
    Fan G; Wang L; Dong Y; Zhao Z; Deng M; Niu S; Zhang X; Cao X
    Sci Rep; 2017 Apr; 7(1):1285. PubMed ID: 28455522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification and profiling of microRNAs in Paulownia tomentosa cambial tissues in response to seasonal changes.
    Qiu Z; He Y; Zhang Y; Guo J; Zhang L
    Gene; 2018 Nov; 677():32-40. PubMed ID: 30036657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome analysis of Crossostephium chinensis provides insight into the molecular basis of salinity stress responses.
    Yang H; Sun M; Lin S; Guo Y; Yang Y; Zhang T; Zhang J
    PLoS One; 2017; 12(11):e0187124. PubMed ID: 29131853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implications of polyploidy events on the phenotype, microstructure, and proteome of Paulownia australis.
    Wang Z; Fan G; Dong Y; Zhai X; Deng M; Zhao Z; Liu W; Cao Y
    PLoS One; 2017; 12(3):e0172633. PubMed ID: 28273106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide expression profiling of the transcriptomes of four Paulownia tomentosa accessions in response to drought.
    Dong Y; Fan G; Deng M; Xu E; Zhao Z
    Genomics; 2014 Oct; 104(4):295-305. PubMed ID: 25192670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting the proteome dynamics of the salt stress induced changes in the leaf of diploid and autotetraploid Paulownia fortunei.
    Deng M; Dong Y; Zhao Z; Li Y; Fan G
    PLoS One; 2017; 12(7):e0181937. PubMed ID: 28750031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of leaf transcriptomes of cassava "Xinxuan 048" diploid and autotetraploid plants.
    Yin L; Qu J; Zhou H; Shang X; Fang H; Lu J; Yan H
    Genes Genomics; 2018 Sep; 40(9):927-935. PubMed ID: 30155710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Analysis of the Chrysanthemum Leaf Transcript Profiling in Response to Salt Stress.
    Wu YH; Wang T; Wang K; Liang QY; Bai ZY; Liu QL; Pan YZ; Jiang BB; Zhang L
    PLoS One; 2016; 11(7):e0159721. PubMed ID: 27447718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple responses contribute to the enhanced drought tolerance of the autotetraploid Ziziphus jujuba Mill. var. spinosa.
    Li M; Zhang C; Hou L; Yang W; Liu S; Pang X; Li Y
    Cell Biosci; 2021 Jun; 11(1):119. PubMed ID: 34193297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic expression of novel and conserved microRNAs and their targets in diploid and tetraploid of Paulownia tomentosa.
    Fan G; Zhai X; Niu S; Ren Y
    Biochimie; 2014 Jul; 102():68-77. PubMed ID: 24565810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.