BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29049320)

  • 1. Deconvolving sequence features that discriminate between overlapping regulatory annotations.
    Kakumanu A; Velasco S; Mazzoni E; Mahony S
    PLoS Comput Biol; 2017 Oct; 13(10):e1005795. PubMed ID: 29049320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors.
    Wang J; Zhuang J; Iyer S; Lin X; Whitfield TW; Greven MC; Pierce BG; Dong X; Kundaje A; Cheng Y; Rando OJ; Birney E; Myers RM; Noble WS; Snyder M; Weng Z
    Genome Res; 2012 Sep; 22(9):1798-812. PubMed ID: 22955990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide discovery of active regulatory elements and transcription factor footprints in
    Ho MCW; Quintero-Cadena P; Sternberg PW
    Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IMPACT: Genomic Annotation of Cell-State-Specific Regulatory Elements Inferred from the Epigenome of Bound Transcription Factors.
    Amariuta T; Luo Y; Gazal S; Davenport EE; van de Geijn B; Ishigaki K; Westra HJ; Teslovich N; Okada Y; Yamamoto K; ; Price AL; Raychaudhuri S
    Am J Hum Genet; 2019 May; 104(5):879-895. PubMed ID: 31006511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence and chromatin determinants of cell-type-specific transcription factor binding.
    Arvey A; Agius P; Noble WS; Leslie C
    Genome Res; 2012 Sep; 22(9):1723-34. PubMed ID: 22955984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maps of context-dependent putative regulatory regions and genomic signal interactions.
    Diamanti K; Umer HM; Kruczyk M; Dąbrowski MJ; Cavalli M; Wadelius C; Komorowski J
    Nucleic Acids Res; 2016 Nov; 44(19):9110-9120. PubMed ID: 27625394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network.
    Hosseinpour B; Bakhtiarizadeh MR; Khosravi P; Ebrahimie E
    Gene; 2013 Dec; 531(2):212-9. PubMed ID: 24042128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPMiner: an integrated system for mining combinatorial cis-regulatory elements in mammalian gene group.
    Lee TY; Chang WC; Hsu JB; Chang TH; Shien DM
    BMC Genomics; 2012; 13 Suppl 1(Suppl 1):S3. PubMed ID: 22369687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming from Embryonic Stem Cells.
    Velasco S; Ibrahim MM; Kakumanu A; Garipler G; Aydin B; Al-Sayegh MA; Hirsekorn A; Abdul-Rahman F; Satija R; Ohler U; Mahony S; Mazzoni EO
    Cell Stem Cell; 2017 Feb; 20(2):205-217.e8. PubMed ID: 27939218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling co-occupancy of transcription factors using chromatin features.
    Liu L; Zhao W; Zhou X
    Nucleic Acids Res; 2016 Mar; 44(5):e49. PubMed ID: 26590261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The accessible chromatin landscape of the human genome.
    Thurman RE; Rynes E; Humbert R; Vierstra J; Maurano MT; Haugen E; Sheffield NC; Stergachis AB; Wang H; Vernot B; Garg K; John S; Sandstrom R; Bates D; Boatman L; Canfield TK; Diegel M; Dunn D; Ebersol AK; Frum T; Giste E; Johnson AK; Johnson EM; Kutyavin T; Lajoie B; Lee BK; Lee K; London D; Lotakis D; Neph S; Neri F; Nguyen ED; Qu H; Reynolds AP; Roach V; Safi A; Sanchez ME; Sanyal A; Shafer A; Simon JM; Song L; Vong S; Weaver M; Yan Y; Zhang Z; Zhang Z; Lenhard B; Tewari M; Dorschner MO; Hansen RS; Navas PA; Stamatoyannopoulos G; Iyer VR; Lieb JD; Sunyaev SR; Akey JM; Sabo PJ; Kaul R; Furey TS; Dekker J; Crawford GE; Stamatoyannopoulos JA
    Nature; 2012 Sep; 489(7414):75-82. PubMed ID: 22955617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing transcription factor combinatorics in different promoter classes and in enhancers.
    Vandel J; Cassan O; Lèbre S; Lecellier CH; Bréhélin L
    BMC Genomics; 2019 Feb; 20(1):103. PubMed ID: 30709337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of chromatin and transcriptional co-regulators in mediating p63-genome interactions in keratinocytes.
    Sethi I; Sinha S; Buck MJ
    BMC Genomics; 2014 Nov; 15(1):1042. PubMed ID: 25433490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of transcriptional regulation of the small leucine rich proteoglycans.
    Tasheva ES; Klocke B; Conrad GW
    Mol Vis; 2004 Oct; 10():758-72. PubMed ID: 15496828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Chromatin Landscape Transitions Identify Novel Pathways in Early Commitment to Osteoblast Differentiation.
    Thompson B; Varticovski L; Baek S; Hager GL
    PLoS One; 2016; 11(2):e0148619. PubMed ID: 26890492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding a signature-based model of transcription cofactor recruitment dictated by cardinal cis-regulatory elements in proximal promoter regions.
    Benner C; Konovalov S; Mackintosh C; Hutt KR; Stunnenberg R; Garcia-Bassets I
    PLoS Genet; 2013 Nov; 9(11):e1003906. PubMed ID: 24244184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of transcripts derived from promoter III of the acetyl-CoA carboxylase-alpha gene in mammary gland is associated with recruitment of SREBP-1 to a region of the proximal promoter defined by a DNase I hypersensitive site.
    Barber MC; Vallance AJ; Kennedy HT; Travers MT
    Biochem J; 2003 Oct; 375(Pt 2):489-501. PubMed ID: 12871210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.