These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Flexible and comprehensive patient-specific mitral valve silicone models with chordae tendineae made from 3D-printable molds. Engelhardt S; Sauerzapf S; Preim B; Karck M; Wolf I; De Simone R Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1177-1186. PubMed ID: 30997636 [TBL] [Abstract][Full Text] [Related]
3. Mitral valve modelling and three-dimensional printing for planning and simulation of mitral valve repair. Daemen JHT; Heuts S; Olsthoorn JR; Maessen JG; Sardari Nia P Eur J Cardiothorac Surg; 2019 Mar; 55(3):543-551. PubMed ID: 30202862 [TBL] [Abstract][Full Text] [Related]
4. Comparison of 3D Echocardiogram-Derived 3D Printed Valve Models to Molded Models for Simulated Repair of Pediatric Atrioventricular Valves. Scanlan AB; Nguyen AV; Ilina A; Lasso A; Cripe L; Jegatheeswaran A; Silvestro E; McGowan FX; Mascio CE; Fuller S; Spray TL; Cohen MS; Fichtinger G; Jolley MA Pediatr Cardiol; 2018 Mar; 39(3):538-547. PubMed ID: 29181795 [TBL] [Abstract][Full Text] [Related]
5. 3D-printed anatomical models of the cystic duct and its variants, a low-cost solution for an in-house built simulator for laparoscopic surgery training. Casas-Murillo C; Zuñiga-Ruiz A; Lopez-Barron RE; Sanchez-Uresti A; Gogeascoechea-Hernandez A; Muñoz-Maldonado GE; Salinas-Chapa M; Elizondo-Riojas G; Negreros-Osuna AA Surg Radiol Anat; 2021 Apr; 43(4):537-544. PubMed ID: 33386458 [TBL] [Abstract][Full Text] [Related]
6. 3D Modelling and Printing Technology to Produce Patient-Specific 3D Models. Birbara NS; Otton JM; Pather N Heart Lung Circ; 2019 Feb; 28(2):302-313. PubMed ID: 29655572 [TBL] [Abstract][Full Text] [Related]
7. 3D Printed Modeling of the Mitral Valve for Catheter-Based Structural Interventions. Vukicevic M; Puperi DS; Jane Grande-Allen K; Little SH Ann Biomed Eng; 2017 Feb; 45(2):508-519. PubMed ID: 27324801 [TBL] [Abstract][Full Text] [Related]
8. Three-Dimensional Printing of Life-Like Models for Simulation and Training of Minimally Invasive Cardiac Surgery. Yamada T; Osako M; Uchimuro T; Yoon R; Morikawa T; Sugimoto M; Suda H; Shimizu H Innovations (Phila); 2017; 12(6):459-465. PubMed ID: 29232300 [TBL] [Abstract][Full Text] [Related]
9. Robotic dismembered pyeloplasty surgical simulation using a 3D-printed silicone-based model: development, face validation and crowdsourced learning outcomes assessment. Bendre HH; Rajender A; Barbosa PV; Wason SEL J Robot Surg; 2020 Dec; 14(6):897-902. PubMed ID: 32240498 [TBL] [Abstract][Full Text] [Related]
10. A soft functional mitral valve model prepared by three-dimensional printing as an aid for an advanced mitral valve operation. Yang Y; Wang H; Song H; Hu X; Hu R; Cao S; Guo J; Zhou Q Eur J Cardiothorac Surg; 2022 Mar; 61(4):877-885. PubMed ID: 35134168 [TBL] [Abstract][Full Text] [Related]
11. Utility of patient-specific silicone renal models for planning and rehearsal of complex tumour resections prior to robot-assisted laparoscopic partial nephrectomy. von Rundstedt FC; Scovell JM; Agrawal S; Zaneveld J; Link RE BJU Int; 2017 Apr; 119(4):598-604. PubMed ID: 27862866 [TBL] [Abstract][Full Text] [Related]
12. Utilizing 3D Printing and Hydrogel Casting for the Development of Patient-Specific Rehearsal Platforms for Robotic Assisted Partial Nephrectomies. Ghazi A; Saba P; Melnyk R; Joseph J Urology; 2021 Jan; 147():317. PubMed ID: 33129872 [TBL] [Abstract][Full Text] [Related]
13. Pediatric laryngeal simulator using 3D printed models: A novel technique. Kavanagh KR; Cote V; Tsui Y; Kudernatsch S; Peterson DR; Valdez TA Laryngoscope; 2017 Apr; 127(4):E132-E137. PubMed ID: 27730649 [TBL] [Abstract][Full Text] [Related]
14. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects. Weinstock P; Rehder R; Prabhu SP; Forbes PW; Roussin CJ; Cohen AR J Neurosurg Pediatr; 2017 Jul; 20(1):1-9. PubMed ID: 28438070 [TBL] [Abstract][Full Text] [Related]
15. Design and Validation of a Low-Cost, High-Fidelity Model for Urethrovesical Anastomosis in Radical Prostatectomy. Johnson BA; Timberlake M; Steinberg RL; Kosemund M; Mueller B; Gahan JC J Endourol; 2019 Apr; 33(4):331-336. PubMed ID: 30734578 [TBL] [Abstract][Full Text] [Related]
17. A novel low-fidelity simulator for both mitral valve and tricuspid valve surgery: the surgical skills trainer for classic open and minimally invasive techniques. Verberkmoes NJ; Verberkmoes-Broeders EM Interact Cardiovasc Thorac Surg; 2013 Feb; 16(2):97-101. PubMed ID: 23125307 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional prototyping for procedural simulation of transcatheter mitral valve replacement in patients with mitral annular calcification. El Sabbagh A; Eleid MF; Matsumoto JM; Anavekar NS; Al-Hijji MA; Said SM; Nkomo VT; Holmes DR; Rihal CS; Foley TA Catheter Cardiovasc Interv; 2018 Dec; 92(7):E537-E549. PubMed ID: 29359388 [TBL] [Abstract][Full Text] [Related]
19. Replicated mitral valve models from real patients offer training opportunities for minimally invasive mitral valve repair. Engelhardt S; Sauerzapf S; Brčić A; Karck M; Wolf I; De Simone R Interact Cardiovasc Thorac Surg; 2019 Jul; 29(1):43-50. PubMed ID: 30783681 [TBL] [Abstract][Full Text] [Related]
20. [3D printing in neurosurgery: a specific model for patients with craniosynostosis]. Jiménez Ormabera B; Díez Valle R; Zaratiegui Fernández J; Llorente Ortega M; Unamuno Iñurritegui X; Tejada Solís S Neurocirugia (Astur); 2017; 28(6):260-265. PubMed ID: 28666846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]