These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 29049878)
21. Density functionals for inorganometallic and organometallic chemistry. Schultz NE; Zhao Y; Truhlar DG J Phys Chem A; 2005 Dec; 109(49):11127-43. PubMed ID: 16331896 [TBL] [Abstract][Full Text] [Related]
22. How important is the amount of exact exchange for spin-state energy ordering in DFT? Case study of molybdenum carbide cluster, Mo4C2. Hostaš J; Pérez-Becerra KO; Calaminici P; Barrios-Herrera L; Lourenço MP; Tchagang A; Salahub DR; Köster AM J Chem Phys; 2023 Nov; 159(18):. PubMed ID: 37947508 [TBL] [Abstract][Full Text] [Related]
23. How Evenly Can Approximate Density Functionals Treat the Different Multiplicities and Ionization States of 4d Transition Metal Atoms? Luo S; Truhlar DG J Chem Theory Comput; 2012 Nov; 8(11):4112-26. PubMed ID: 26605578 [TBL] [Abstract][Full Text] [Related]
24. Towards accurate estimates of the spin-state energetics of spin-crossover complexes within density functional theory: a comparative case study of cobalt(II) complexes. Vargas A; Krivokapic I; Hauser A; Lawson Daku LM Phys Chem Chem Phys; 2013 Mar; 15(11):3752-63. PubMed ID: 23389801 [TBL] [Abstract][Full Text] [Related]
25. Distinctive Reaction Pathways at Base Metals in High-Spin Organometallic Catalysts. Holland PL Acc Chem Res; 2015 Jun; 48(6):1696-702. PubMed ID: 25989357 [TBL] [Abstract][Full Text] [Related]
26. Seeing Is Believing: Experimental Spin States from Machine Learning Model Structure Predictions. Taylor MG; Yang T; Lin S; Nandy A; Janet JP; Duan C; Kulik HJ J Phys Chem A; 2020 Apr; 124(16):3286-3299. PubMed ID: 32223165 [TBL] [Abstract][Full Text] [Related]
27. Components of the Bond Energy in Polar Diatomic Molecules, Radicals, and Ions Formed by Group-1 and Group-2 Metal Atoms. Yu H; Truhlar DG J Chem Theory Comput; 2015 Jul; 11(7):2968-83. PubMed ID: 26575734 [TBL] [Abstract][Full Text] [Related]
28. Testing the TPSS meta-generalized-gradient-approximation exchange-correlation functional in calculations of transition states and reaction barriers. Kanai Y; Wang X; Selloni A; Car R J Chem Phys; 2006 Dec; 125(23):234104. PubMed ID: 17190544 [TBL] [Abstract][Full Text] [Related]
29. Conceptual Insights into DFT Spin-State Energetics of Octahedral Transition-Metal Complexes through a Density Difference Analysis. Pinter B; Chankisjijev A; Geerlings P; Harvey JN; De Proft F Chemistry; 2018 Apr; 24(20):5281-5292. PubMed ID: 29114944 [TBL] [Abstract][Full Text] [Related]
30. Predicting electronic structure properties of transition metal complexes with neural networks. Janet JP; Kulik HJ Chem Sci; 2017 Jul; 8(7):5137-5152. PubMed ID: 30155224 [TBL] [Abstract][Full Text] [Related]
31. Where Does the Density Localize? Convergent Behavior for Global Hybrids, Range Separation, and DFT+U. Gani TZ; Kulik HJ J Chem Theory Comput; 2016 Dec; 12(12):5931-5945. PubMed ID: 27951665 [TBL] [Abstract][Full Text] [Related]
32. Toward a computational description of nitrile hydratase: studies of the ground state bonding and spin-dependent energetics of mononuclear, non-heme Fe(III) complexes. Chang CH; Boone AJ; Bartlett RJ; Richards NG Inorg Chem; 2004 Jan; 43(2):458-72. PubMed ID: 14731008 [TBL] [Abstract][Full Text] [Related]
33. Minimizing density functional failures for non-covalent interactions beyond van der Waals complexes. Corminboeuf C Acc Chem Res; 2014 Nov; 47(11):3217-24. PubMed ID: 24655016 [TBL] [Abstract][Full Text] [Related]
34. Spin-State Energetics of Fe(III) and Ru(III) Aqua Complexes: Accurate ab Initio Calculations and Evidence for Huge Solvation Effects. Radoń M; Gąssowska K; Szklarzewicz J; Broclawik E J Chem Theory Comput; 2016 Apr; 12(4):1592-605. PubMed ID: 26990105 [TBL] [Abstract][Full Text] [Related]
35. Biological water oxidation. Cox N; Pantazis DA; Neese F; Lubitz W Acc Chem Res; 2013 Jul; 46(7):1588-96. PubMed ID: 23506074 [TBL] [Abstract][Full Text] [Related]
36. Appraising spin-state energetics in transition metal complexes using double-hybrid models: accountability of SOS0-PBESCAN0-2(a) as a promising paradigm. Alipour M; Izadkhast T Phys Chem Chem Phys; 2020 May; 22(17):9388-9404. PubMed ID: 32309838 [TBL] [Abstract][Full Text] [Related]
37. Multiconfiguration Pair-Density Functional Theory for Transition Metal Silicide Bond Dissociation Energies, Bond Lengths, and State Orderings. Oakley MS; Gagliardi L; Truhlar DG Molecules; 2021 May; 26(10):. PubMed ID: 34068045 [TBL] [Abstract][Full Text] [Related]
38. Benchmarking a Molecular Flake Model on the Road to Programmable Graphene-Based Single-Atom Catalysts. Gallagher C; Siddiqui W; Arnold T; Cheng C; Su E; Zhao Q J Phys Chem C Nanomater Interfaces; 2024 Feb; 128(7):2876-2883. PubMed ID: 38414836 [TBL] [Abstract][Full Text] [Related]
39. On the Sensitivity to Density-Functional Approximations for CO Binding Energies of Single-Atom Catalysts in Nitrogen-Doped Graphene. Wu Q; Wang G; Liu M Chemphyschem; 2022 Mar; 23(5):e202100787. PubMed ID: 35146865 [TBL] [Abstract][Full Text] [Related]
40. Exchange-Correlation Effects for Noncovalent Interactions in Density Functional Theory. Otero-de-la-Roza A; DiLabio GA; Johnson ER J Chem Theory Comput; 2016 Jul; 12(7):3160-75. PubMed ID: 27243962 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]