These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 29049925)
1. Omics tools: New challenges in aquatic nanotoxicology? Revel M; Châtel A; Mouneyrac C Aquat Toxicol; 2017 Dec; 193():72-85. PubMed ID: 29049925 [TBL] [Abstract][Full Text] [Related]
2. Engineered nanomaterials: From their properties and applications, to their toxicity towards marine bivalves in a changing environment. De Marchi L; Coppola F; Soares AMVM; Pretti C; Monserrat JM; Torre CD; Freitas R Environ Res; 2019 Nov; 178():108683. PubMed ID: 31539823 [TBL] [Abstract][Full Text] [Related]
3. Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: An overview. Rocha TL; Gomes T; Sousa VS; Mestre NC; Bebianno MJ Mar Environ Res; 2015 Oct; 111():74-88. PubMed ID: 26152602 [TBL] [Abstract][Full Text] [Related]
4. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Freixa A; Acuña V; Sanchís J; Farré M; Barceló D; Sabater S Sci Total Environ; 2018 Apr; 619-620():328-337. PubMed ID: 29154051 [TBL] [Abstract][Full Text] [Related]
5. Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Matranga V; Corsi I Mar Environ Res; 2012 May; 76():32-40. PubMed ID: 22391237 [TBL] [Abstract][Full Text] [Related]
6. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? Scown TM; van Aerle R; Tyler CR Crit Rev Toxicol; 2010 Aug; 40(7):653-70. PubMed ID: 20662713 [TBL] [Abstract][Full Text] [Related]
7. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. Xu L; Xu M; Wang R; Yin Y; Lynch I; Liu S Small; 2020 Sep; 16(36):e2003691. PubMed ID: 32780948 [TBL] [Abstract][Full Text] [Related]
8. Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia model organism. Kim HJ; Koedrith P; Seo YR Int J Mol Sci; 2015 May; 16(6):12261-87. PubMed ID: 26035755 [TBL] [Abstract][Full Text] [Related]
9. Environmental behavior and eco-toxicity of xylene in aquatic environments: A review. Duan W; Meng F; Wang F; Liu Q Ecotoxicol Environ Saf; 2017 Nov; 145():324-332. PubMed ID: 28756253 [TBL] [Abstract][Full Text] [Related]
10. Old model organisms and new behavioral end-points: Swimming alteration as an ecotoxicological response. Faimali M; Gambardella C; Costa E; Piazza V; Morgana S; Estévez-Calvar N; Garaventa F Mar Environ Res; 2017 Jul; 128():36-45. PubMed ID: 27194191 [TBL] [Abstract][Full Text] [Related]
11. In silico analysis of nanomaterials hazard and risk. Cohen Y; Rallo R; Liu R; Liu HH Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971 [TBL] [Abstract][Full Text] [Related]
12. A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. Kansara K; Bolan S; Radhakrishnan D; Palanisami T; Al-Muhtaseb AH; Bolan N; Vinu A; Kumar A; Karakoti A Environ Pollut; 2022 Mar; 296():118726. PubMed ID: 34953948 [TBL] [Abstract][Full Text] [Related]
13. Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Snape JR; Maund SJ; Pickford DB; Hutchinson TH Aquat Toxicol; 2004 Apr; 67(2):143-54. PubMed ID: 15003699 [TBL] [Abstract][Full Text] [Related]
14. Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives. Chae Y; An YJ Mar Pollut Bull; 2017 Nov; 124(2):624-632. PubMed ID: 28222864 [TBL] [Abstract][Full Text] [Related]
15. Incorporating exposure into aquatic toxicological studies: an imperative. Wang WX Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):9-15. PubMed ID: 22099340 [TBL] [Abstract][Full Text] [Related]
16. Potential of the small cyclopoid copepod Paracyclopina nana as an invertebrate model for ecotoxicity testing. Dahms HU; Won EJ; Kim HS; Han J; Park HG; Souissi S; Raisuddin S; Lee JS Aquat Toxicol; 2016 Nov; 180():282-294. PubMed ID: 27770640 [TBL] [Abstract][Full Text] [Related]
17. Cross-examination of engineered nanomaterials in crop production: Application and related implications. Kusiak M; Oleszczuk P; Jośko I J Hazard Mater; 2022 Feb; 424(Pt A):127374. PubMed ID: 34879568 [TBL] [Abstract][Full Text] [Related]
18. Immunological Responses of Marine Bivalves to Contaminant Exposure: Contribution of the -Omics Approach. Balbi T; Auguste M; Ciacci C; Canesi L Front Immunol; 2021; 12():618726. PubMed ID: 33679759 [TBL] [Abstract][Full Text] [Related]
19. Metal-based nanomaterials in aquatic environments: What do we know so far about their ecotoxicity? Ale A; Andrade VS; Gutierrez MF; Ayech A; Monserrat JM; Desimone MF; Cazenave J Aquat Toxicol; 2024 Oct; 275():107069. PubMed ID: 39241467 [TBL] [Abstract][Full Text] [Related]
20. Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Handy RD; Cornelis G; Fernandes T; Tsyusko O; Decho A; Sabo-Attwood T; Metcalfe C; Steevens JA; Klaine SJ; Koelmans AA; Horne N Environ Toxicol Chem; 2012 Jan; 31(1):15-31. PubMed ID: 22002667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]