These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 29050207)
1. Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state. Leonov A; Feldman R; Piano A; Arlia-Ciommo A; Lutchman V; Ahmadi M; Elsaser S; Fakim H; Heshmati-Moghaddam M; Hussain A; Orfali S; Rajen H; Roofigari-Esfahani N; Rosanelli L; Titorenko VI Oncotarget; 2017 Sep; 8(41):69328-69350. PubMed ID: 29050207 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast. Mohammad K; Baratang Junio JA; Tafakori T; Orfanos E; Titorenko VI Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32630624 [TBL] [Abstract][Full Text] [Related]
3. Caloric restriction causes a distinct reorganization of the lipidome in quiescent and non-quiescent cells of budding yeast. Mohammad K; Orfanos E; Titorenko VI Oncotarget; 2021 Nov; 12(24):2351-2374. PubMed ID: 34853658 [TBL] [Abstract][Full Text] [Related]
4. Caloric restriction delays yeast chronological aging by remodeling carbohydrate and lipid metabolism, altering peroxisomal and mitochondrial functionalities, and postponing the onsets of apoptotic and liponecrotic modes of regulated cell death. Arlia-Ciommo A; Leonov A; Beach A; Richard VR; Bourque SD; Burstein MT; Kyryakov P; Gomez-Perez A; Koupaki O; Feldman R; Titorenko VI Oncotarget; 2018 Mar; 9(22):16163-16184. PubMed ID: 29662634 [TBL] [Abstract][Full Text] [Related]
5. Diverse geroprotectors differently affect a mechanism linking cellular aging to cellular quiescence in budding yeast. Leonov A; Feldman R; Piano A; Arlia-Ciommo A; Junio JAB; Orfanos E; Tafakori T; Lutchman V; Mohammad K; Elsaser S; Orfali S; Rajen H; Titorenko VI Oncotarget; 2022; 13():918-943. PubMed ID: 35937500 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms through which lithocholic acid delays yeast chronological aging under caloric restriction conditions. Arlia-Ciommo A; Leonov A; Mohammad K; Beach A; Richard VR; Bourque SD; Burstein MT; Goldberg AA; Kyryakov P; Gomez-Perez A; Koupaki O; Titorenko VI Oncotarget; 2018 Oct; 9(79):34945-34971. PubMed ID: 30405886 [TBL] [Abstract][Full Text] [Related]
7. Lithocholic acid extends longevity of chronologically aging yeast only if added at certain critical periods of their lifespan. Burstein MT; Kyryakov P; Beach A; Richard VR; Koupaki O; Gomez-Perez A; Leonov A; Levy S; Noohi F; Titorenko VI Cell Cycle; 2012 Sep; 11(18):3443-62. PubMed ID: 22894934 [TBL] [Abstract][Full Text] [Related]
8. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast. Choi JS; Lee CK Biochem Biophys Res Commun; 2013 Sep; 439(1):126-31. PubMed ID: 23942118 [TBL] [Abstract][Full Text] [Related]
9. COCOA (Theobroma cacao) Polyphenol-Rich Extract Increases the Chronological Lifespan of Saccharomyces cerevisiae. Baiges I; Arola L J Frailty Aging; 2016; 5(3):186-90. PubMed ID: 29240368 [TBL] [Abstract][Full Text] [Related]
10. Caloric restriction creates a metabolic pattern of chronological aging delay that in budding yeast differs from the metabolic design established by two other geroprotectors. Mohammad K; Titorenko VI Oncotarget; 2021 Mar; 12(7):608-625. PubMed ID: 33868583 [TBL] [Abstract][Full Text] [Related]
11. Caloric restriction extends yeast chronological lifespan by altering a pattern of age-related changes in trehalose concentration. Kyryakov P; Beach A; Richard VR; Burstein MT; Leonov A; Levy S; Titorenko VI Front Physiol; 2012; 3():256. PubMed ID: 22783207 [TBL] [Abstract][Full Text] [Related]
12. Ammonium is a key determinant on the dietary restriction of yeast chronological aging in culture medium. Santos J; Leitão-Correia F; Sousa MJ; Leão C Oncotarget; 2015 Mar; 6(9):6511-23. PubMed ID: 25576917 [TBL] [Abstract][Full Text] [Related]
13. Dietary restriction and mitochondrial function link replicative and chronological aging in Saccharomyces cerevisiae. Delaney JR; Murakami C; Chou A; Carr D; Schleit J; Sutphin GL; An EH; Castanza AS; Fletcher M; Goswami S; Higgins S; Holmberg M; Hui J; Jelic M; Jeong KS; Kim JR; Klum S; Liao E; Lin MS; Lo W; Miller H; Moller R; Peng ZJ; Pollard T; Pradeep P; Pruett D; Rai D; Ros V; Schuster A; Singh M; Spector BL; Wende HV; Wang AM; Wasko BM; Olsen B; Kaeberlein M Exp Gerontol; 2013 Oct; 48(10):1006-13. PubMed ID: 23235143 [TBL] [Abstract][Full Text] [Related]
14. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Smith DL; McClure JM; Matecic M; Smith JS Aging Cell; 2007 Oct; 6(5):649-62. PubMed ID: 17711561 [TBL] [Abstract][Full Text] [Related]
15. DNA damage and DNA replication stress in yeast models of aging. Burhans WC; Weinberger M Subcell Biochem; 2012; 57():187-206. PubMed ID: 22094423 [TBL] [Abstract][Full Text] [Related]
16. Glucose restriction induces transient G2 cell cycle arrest extending cellular chronological lifespan. Masuda F; Ishii M; Mori A; Uehara L; Yanagida M; Takeda K; Saitoh S Sci Rep; 2016 Jan; 6():19629. PubMed ID: 26804466 [TBL] [Abstract][Full Text] [Related]
17. Effects of caloric restriction on the antagonistic and integrative hallmarks of aging. Erbaba B; Arslan-Ergul A; Adams MM Ageing Res Rev; 2021 Mar; 66():101228. PubMed ID: 33246078 [TBL] [Abstract][Full Text] [Related]
18. Aging and the survival of quiescent and non-quiescent cells in yeast stationary-phase cultures. Werner-Washburne M; Roy S; Davidson GS Subcell Biochem; 2012; 57():123-43. PubMed ID: 22094420 [TBL] [Abstract][Full Text] [Related]
19. A method for high-throughput quantitative analysis of yeast chronological life span. Murakami CJ; Burtner CR; Kennedy BK; Kaeberlein M J Gerontol A Biol Sci Med Sci; 2008 Feb; 63(2):113-21. PubMed ID: 18314444 [TBL] [Abstract][Full Text] [Related]