BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29050346)

  • 1. Identification of candidate genes related to pancreatic cancer based on analysis of gene co-expression and protein-protein interaction network.
    Zhang T; Wang X; Yue Z
    Oncotarget; 2017 Sep; 8(41):71105-71116. PubMed ID: 29050346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of breast cancer candidate genes using gene co-expression and protein-protein interaction information.
    Yue Z; Li HT; Yang Y; Hussain S; Zheng CH; Xia J; Chen Y
    Oncotarget; 2016 Jun; 7(24):36092-36100. PubMed ID: 27150055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of protein interaction and gene co-expression information for identification of melanoma candidate genes.
    Wu K; Wang W; Ye Y; Huang J; Zhou Y; Zhang Y; Zhang X; Wu W
    Melanoma Res; 2019 Apr; 29(2):126-133. PubMed ID: 30451788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining for Candidate Genes Related to Pancreatic Cancer Using Protein-Protein Interactions and a Shortest Path Approach.
    Yuan F; Zhang YH; Wan S; Wang S; Kong XY
    Biomed Res Int; 2015; 2015():623121. PubMed ID: 26613085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated genomic analysis to identify druggable targets for pancreatic cancer.
    Mugiyanto E; Adikusuma W; Irham LM; Huang WC; Chang WC; Kuo CN
    Front Oncol; 2022; 12():989077. PubMed ID: 36531045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-expression network with protein-protein interaction and transcription regulation in malaria parasite Plasmodium falciparum.
    Yu FD; Yang SY; Li YY; Hu W
    Gene; 2013 Apr; 518(1):7-16. PubMed ID: 23274650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of candidate miRNA biomarkers for pancreatic ductal adenocarcinoma by weighted gene co-expression network analysis.
    Giulietti M; Occhipinti G; Principato G; Piva F
    Cell Oncol (Dordr); 2017 Apr; 40(2):181-192. PubMed ID: 28205147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weighted gene co-expression network analysis reveals key genes involved in pancreatic ductal adenocarcinoma development.
    Giulietti M; Occhipinti G; Principato G; Piva F
    Cell Oncol (Dordr); 2016 Aug; 39(4):379-88. PubMed ID: 27240826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of hub subnetwork based on topological features of genes in breast cancer.
    Zhuang DY; Jiang L; He QQ; Zhou P; Yue T
    Int J Mol Med; 2015 Mar; 35(3):664-74. PubMed ID: 25573623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening for genes and subnetworks associated with pancreatic cancer based on the gene expression profile.
    Long J; Liu Z; Wu X; Xu Y; Ge C
    Mol Med Rep; 2016 May; 13(5):3779-86. PubMed ID: 27035224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candidate DNA repair susceptibility genes identified by exome sequencing in high-risk pancreatic cancer.
    Smith AL; Alirezaie N; Connor A; Chan-Seng-Yue M; Grant R; Selander I; Bascuñana C; Borgida A; Hall A; Whelan T; Holter S; McPherson T; Cleary S; Petersen GM; Omeroglu A; Saloustros E; McPherson J; Stein LD; Foulkes WD; Majewski J; Gallinger S; Zogopoulos G
    Cancer Lett; 2016 Jan; 370(2):302-12. PubMed ID: 26546047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis.
    Rajamani D; Bhasin MK
    Genome Med; 2016 May; 8(1):38. PubMed ID: 27137215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MiRNA-Mediated Subpathway Identification and Network Module Analysis to Reveal Prognostic Markers in Human Pancreatic Cancer.
    Liu Y; Cui Y; Bai X; Feng C; Li M; Han X; Ai B; Zhang J; Li X; Han J; Zhu J; Jiang Y; Pan Q; Wang F; Xu M; Li C; Wang Q
    Front Genet; 2020; 11():606940. PubMed ID: 33362865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of potential biomarkers to differentially diagnose solid pseudopapillary tumors and pancreatic malignancies via a gene regulatory network.
    Li P; Hu Y; Yi J; Li J; Yang J; Wang J
    J Transl Med; 2015 Nov; 13():361. PubMed ID: 26578390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of human complement factor B as a novel biomarker candidate for pancreatic ductal adenocarcinoma.
    Lee MJ; Na K; Jeong SK; Lim JS; Kim SA; Lee MJ; Song SY; Kim H; Hancock WS; Paik YK
    J Proteome Res; 2014 Nov; 13(11):4878-88. PubMed ID: 25057901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A network approach predicts NFKBIA and BIRC3 as pathogenic genes in childhood asthma.
    Gao XM
    Genet Mol Res; 2016 Jun; 15(2):. PubMed ID: 27420950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statewide Retrospective Review of Familial Pancreatic Cancer in Delaware, and Frequency of Genetic Mutations in Pancreatic Cancer Kindreds.
    Catts ZA; Baig MK; Milewski B; Keywan C; Guarino M; Petrelli N
    Ann Surg Oncol; 2016 May; 23(5):1729-35. PubMed ID: 26727920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long noncoding RNA CCDC26 as a potential predictor biomarker contributes to tumorigenesis in pancreatic cancer.
    Peng W; Jiang A
    Biomed Pharmacother; 2016 Oct; 83():712-717. PubMed ID: 27470572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Key Candidate Genes and Pathways in Colorectal Cancer by Integrated Bioinformatical Analysis.
    Guo Y; Bao Y; Ma M; Yang W
    Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28350360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.