BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 29050400)

  • 21. Dopamine induced neurodegeneration in a PINK1 model of Parkinson's disease.
    Gandhi S; Vaarmann A; Yao Z; Duchen MR; Wood NW; Abramov AY
    PLoS One; 2012; 7(5):e37564. PubMed ID: 22662171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase.
    Eldeeb MA; Ragheb MA
    Curr Genet; 2020 Aug; 66(4):693-701. PubMed ID: 32157382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased Post-Hypoxic Oxidative Stress and Activation of the PERK Branch of the UPR in
    Kokott-Vuong A; Jung J; Fehr AT; Kirschfink N; Noristani R; Voigt A; Reich A; Schulz JB; Huber M; Habib P
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expanding insights of mitochondrial dysfunction in Parkinson's disease.
    Abou-Sleiman PM; Muqit MM; Wood NW
    Nat Rev Neurosci; 2006 Mar; 7(3):207-19. PubMed ID: 16495942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mpv17l protects against mitochondrial oxidative stress and apoptosis by activation of Omi/HtrA2 protease.
    Krick S; Shi S; Ju W; Faul C; Tsai SY; Mundel P; Böttinger EP
    Proc Natl Acad Sci U S A; 2008 Sep; 105(37):14106-11. PubMed ID: 18772386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease.
    Koentjoro B; Park JS; Sue CM
    Sci Rep; 2017 Mar; 7():44373. PubMed ID: 28281653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1.
    Pridgeon JW; Olzmann JA; Chin LS; Li L
    PLoS Biol; 2007 Jul; 5(7):e172. PubMed ID: 17579517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson's disease.
    Ferretta A; Gaballo A; Tanzarella P; Piccoli C; Capitanio N; Nico B; Annese T; Di Paola M; Dell'aquila C; De Mari M; Ferranini E; Bonifati V; Pacelli C; Cocco T
    Biochim Biophys Acta; 2014 Jul; 1842(7):902-15. PubMed ID: 24582596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance.
    Heeman B; Van den Haute C; Aelvoet SA; Valsecchi F; Rodenburg RJ; Reumers V; Debyser Z; Callewaert G; Koopman WJ; Willems PH; Baekelandt V
    J Cell Sci; 2011 Apr; 124(Pt 7):1115-25. PubMed ID: 21385841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of GSK-3β mediated phosphorylation in HtrA2 contributes to uncontrolled cell death with Parkinsonian phenotype.
    Bose K; Wagh A; Mishra V; Dutta S; Parui AL; Puja R; Mudrale SP; Kulkarni SS; Gai PB; Sarin R
    Int J Biol Macromol; 2021 Jun; 180():97-111. PubMed ID: 33716130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PPARγ activation rescues mitochondrial function from inhibition of complex I and loss of PINK1.
    Corona JC; de Souza SC; Duchen MR
    Exp Neurol; 2014 Mar; 253():16-27. PubMed ID: 24374061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease.
    Zuo L; Motherwell MS
    Gene; 2013 Dec; 532(1):18-23. PubMed ID: 23954870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorylation of HtrA2 by cyclin-dependent kinase-5 is important for mitochondrial function.
    Fitzgerald JC; Camprubi MD; Dunn L; Wu HC; Ip NY; Kruger R; Martins LM; Wood NW; Plun-Favreau H
    Cell Death Differ; 2012 Feb; 19(2):257-66. PubMed ID: 21701498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.
    Clark IE; Dodson MW; Jiang C; Cao JH; Huh JR; Seol JH; Yoo SJ; Hay BA; Guo M
    Nature; 2006 Jun; 441(7097):1162-6. PubMed ID: 16672981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin.
    Whitworth AJ; Lee JR; Ho VM; Flick R; Chowdhury R; McQuibban GA
    Dis Model Mech; 2008; 1(2-3):168-74; discussion 173. PubMed ID: 19048081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Omi/HtrA2 Regulates a Mitochondria-Dependent Apoptotic Pathway in a Murine Model of Septic Encephalopathy.
    Wang P; Hu Y; Yao D; Li Y
    Cell Physiol Biochem; 2018; 49(6):2163-2173. PubMed ID: 30286467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tumor Necrosis Factor Receptor-Associated Protein 1 Protects against Mitochondrial Injury by Preventing High Glucose-Induced mPTP Opening in Diabetes.
    Liu L; Zhang L; Zhao J; Guo X; Luo Y; Hu W; Zhao T
    Oxid Med Cell Longev; 2020; 2020():6431517. PubMed ID: 32215175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress.
    Gautier CA; Kitada T; Shen J
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11364-9. PubMed ID: 18687901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural-specific deletion of Htra2 causes cerebellar neurodegeneration and defective processing of mitochondrial OPA1.
    Patterson VL; Zullo AJ; Koenig C; Stoessel S; Jo H; Liu X; Han J; Choi M; DeWan AT; Thomas JL; Kuan CY; Hoh J
    PLoS One; 2014; 9(12):e115789. PubMed ID: 25531304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.