These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 29050472)
1. Peptide-Mediated Membrane Transport of Macromolecular Cargo Driven by Membrane Asymmetry. Li X; Huang J; Holden MA; Chen M Anal Chem; 2017 Nov; 89(22):12369-12374. PubMed ID: 29050472 [TBL] [Abstract][Full Text] [Related]
2. Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Henriques ST; Costa J; Castanho MA Biochemistry; 2005 Aug; 44(30):10189-98. PubMed ID: 16042396 [TBL] [Abstract][Full Text] [Related]
3. Direct quantitation of peptide-mediated protein transport across a droplet-interface bilayer. Huang J; Lein M; Gunderson C; Holden MA J Am Chem Soc; 2011 Oct; 133(40):15818-21. PubMed ID: 21838329 [TBL] [Abstract][Full Text] [Related]
4. Protein transport across membranes: Comparison between lysine and guanidinium-rich carriers. Lein M; deRonde BM; Sgolastra F; Tew GN; Holden MA Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2980-4. PubMed ID: 26342679 [TBL] [Abstract][Full Text] [Related]
5. Fast membrane association is a crucial factor in the peptide pep-1 translocation mechanism: a kinetic study followed by surface plasmon resonance. Henriques ST; Castanho MA; Pattenden LK; Aguilar MI Biopolymers; 2010; 94(3):314-22. PubMed ID: 20049920 [TBL] [Abstract][Full Text] [Related]
6. Single-molecule imaging of the association of the cell-penetrating peptide Pep-1 to model membranes. Sharonov A; Hochstrasser RM Biochemistry; 2007 Jul; 46(27):7963-72. PubMed ID: 17567046 [TBL] [Abstract][Full Text] [Related]
7. Molecular interactions between cell penetrating peptide Pep-1 and model cell membranes. Ding B; Chen Z J Phys Chem B; 2012 Mar; 116(8):2545-52. PubMed ID: 22292835 [TBL] [Abstract][Full Text] [Related]
8. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1. Almarwani B; Phambu EN; Alexander C; Nguyen HAT; Phambu N; Sunda-Meya A Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1394-1402. PubMed ID: 29621495 [TBL] [Abstract][Full Text] [Related]
9. Translocation or membrane disintegration? Implication of peptide-membrane interactions in pep-1 activity. Henriques ST; Castanho MA J Pept Sci; 2008 Apr; 14(4):482-7. PubMed ID: 18181239 [TBL] [Abstract][Full Text] [Related]
10. Protein Transport Studied by a Model Asymmetric Membrane Army Arranged in a Dimple Chip. Li X; Chen M Methods Mol Biol; 2021; 2186():213-225. PubMed ID: 32918740 [TBL] [Abstract][Full Text] [Related]
11. The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes. Muñoz-Morris MA; Heitz F; Divita G; Morris MC Biochem Biophys Res Commun; 2007 Apr; 355(4):877-82. PubMed ID: 17331466 [TBL] [Abstract][Full Text] [Related]
12. Consequences of nonlytic membrane perturbation to the translocation of the cell penetrating peptide pep-1 in lipidic vesicles. Henriques ST; Castanho MA Biochemistry; 2004 Aug; 43(30):9716-24. PubMed ID: 15274626 [TBL] [Abstract][Full Text] [Related]
13. Control of Enzyme Reaction Initiation inside Giant Unilamellar Vesicles by the Cell-Penetrating Peptide-Mediated Translocation of Cargo Proteins. Miwa A; Kamiya K ACS Synth Biol; 2022 Nov; 11(11):3836-3846. PubMed ID: 36197293 [TBL] [Abstract][Full Text] [Related]
14. Re-evaluating the role of strongly charged sequences in amphipathic cell-penetrating peptides: a fluorescence study using Pep-1. Henriques ST; Costa J; Castanho MA FEBS Lett; 2005 Aug; 579(20):4498-502. PubMed ID: 16083883 [TBL] [Abstract][Full Text] [Related]
15. Biophysical and biological studies of end-group-modified derivatives of Pep-1. Weller K; Lauber S; Lerch M; Renaud A; Merkle HP; Zerbe O Biochemistry; 2005 Dec; 44(48):15799-811. PubMed ID: 16313183 [TBL] [Abstract][Full Text] [Related]
16. Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers. Shenkarev ZO; Balandin SV; Trunov KI; Paramonov AS; Sukhanov SV; Barsukov LI; Arseniev AS; Ovchinnikova TV Biochemistry; 2011 Jul; 50(28):6255-65. PubMed ID: 21627330 [TBL] [Abstract][Full Text] [Related]
17. A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Gros E; Deshayes S; Morris MC; Aldrian-Herrada G; Depollier J; Heitz F; Divita G Biochim Biophys Acta; 2006 Mar; 1758(3):384-93. PubMed ID: 16545342 [TBL] [Abstract][Full Text] [Related]
18. Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations. Alaybeyoglu B; Sariyar Akbulut B; Ozkirimli E J Biomol Struct Dyn; 2016 Nov; 34(11):2387-98. PubMed ID: 26569019 [TBL] [Abstract][Full Text] [Related]
19. Translocation of histone proteins across lipid bilayers and Mycoplasma membranes. Rosenbluh J; Hariton-Gazal E; Dagan A; Rottem S; Graessmann A; Loyter A J Mol Biol; 2005 Jan; 345(2):387-400. PubMed ID: 15571730 [TBL] [Abstract][Full Text] [Related]
20. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]