BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29050594)

  • 1. Novel bioactive surface functionalization of bacterial cellulose membrane.
    Shao W; Wu J; Liu H; Ye S; Jiang L; Liu X
    Carbohydr Polym; 2017 Dec; 178():270-276. PubMed ID: 29050594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups.
    Fernandes SC; Sadocco P; Alonso-Varona A; Palomares T; Eceiza A; Silvestre AJ; Mondragon I; Freire CS
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3290-7. PubMed ID: 23528008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property.
    Shao W; Liu H; Liu X; Wang S; Wu J; Zhang R; Min H; Huang M
    Carbohydr Polym; 2015 Nov; 132():351-8. PubMed ID: 26256359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes.
    Shao W; Liu H; Wang S; Wu J; Huang M; Min H; Liu X
    Carbohydr Polym; 2016 Jul; 145():114-20. PubMed ID: 27106158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites.
    Shao W; Liu H; Liu X; Sun H; Wang S; Zhang R
    Int J Biol Macromol; 2015 May; 76():209-17. PubMed ID: 25748842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ synthesis of bacterial cellulose/copper nanoparticles composite membranes with long-term antibacterial property.
    He W; Huang X; Zheng Y; Sun Y; Xie Y; Wang Y; Yue L
    J Biomater Sci Polym Ed; 2018 Dec; 29(17):2137-2153. PubMed ID: 30280964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis and characterization of antibacterial bacterial cellulose composite membrane composed of montmorillonite and exopolysaccharides.
    Yang Y; Zhou B; Yu L; Song G; Ge J; Du R
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127477. PubMed ID: 37863143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications.
    Lin WC; Lien CC; Yeh HJ; Yu CM; Hsu SH
    Carbohydr Polym; 2013 Apr; 94(1):603-11. PubMed ID: 23544580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing.
    Laçin NT
    Int J Biol Macromol; 2014 Jun; 67():22-7. PubMed ID: 24631550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric wetting and antibacterial composite membrane obtained by spraying bacterial cellulose grafted with chitosan for sanitary products surface layers.
    Wang Y; Liu X; Yang R; Ma Q
    Carbohydr Polym; 2021 Mar; 256():117602. PubMed ID: 33483082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of aminoalkyl-grafted bacterial cellulose membranes with improved antimicrobial properties for biomedical applications.
    He W; Zhang Z; Zheng Y; Qiao S; Xie Y; Sun Y; Qiao K; Feng Z; Wang X; Wang J
    J Biomed Mater Res A; 2020 May; 108(5):1086-1098. PubMed ID: 31943702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Cu@SiO2/bacterial cellulose nanofibers: Preparation and excellent performance in antibacterial activity.
    Ma B; Huang Y; Zhu C; Chen C; Chen X; Fan M; Sun D
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():656-61. PubMed ID: 26952469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of antibacterial bacterial cellulose composite membranes modified with chitosan or chitooligosaccharide.
    Yin N; Du R; Zhao F; Han Y; Zhou Z
    Carbohydr Polym; 2020 Feb; 229():115520. PubMed ID: 31826404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration.
    Sajjad W; Khan T; Ul-Islam M; Khan R; Hussain Z; Khalid A; Wahid F
    Carbohydr Polym; 2019 Feb; 206():548-556. PubMed ID: 30553356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing.
    Luan J; Wu J; Zheng Y; Song W; Wang G; Guo J; Ding X
    Biomed Mater; 2012 Dec; 7(6):065006. PubMed ID: 23182757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-halamine modified multiporous bacterial cellulose with enhanced antibacterial and hemostatic properties.
    Zhang S; Li L; Ren X; Huang TS
    Int J Biol Macromol; 2020 Oct; 161():1070-1078. PubMed ID: 32531364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological, Release and Antibacterial Performances of Amoxicillin-Loaded Cellulose Aerogels.
    Ye S; He S; Su C; Jiang L; Wen Y; Zhu Z; Shao W
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30127283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Preparation and antibacterial capacity of artificial skin loaded with nanoparticles silver using bacterial cellulose].
    Sun D; Yang J; Li J; Zhou L; Yu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Oct; 26(5):1034-8. PubMed ID: 19947484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of silver sulfadiazine loaded chitosan composite sponges as potential wound dressings.
    Shao W; Wu J; Wang S; Huang M; Liu X; Zhang R
    Carbohydr Polym; 2017 Feb; 157():1963-1970. PubMed ID: 27987918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces.
    Saini S; Yücel Falco Ç; Belgacem MN; Bras J
    Carbohydr Polym; 2016 Jan; 135():239-47. PubMed ID: 26453874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.