These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29050665)

  • 1. Uranium Bioreduction and Biomineralization.
    Wufuer R; Wei Y; Lin Q; Wang H; Song W; Liu W; Zhang D; Pan X; Gadd GM
    Adv Appl Microbiol; 2017; 101():137-168. PubMed ID: 29050665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses exhibited by various microbial groups relevant to uranium exposure.
    Kolhe N; Zinjarde S; Acharya C
    Biotechnol Adv; 2018 Nov; 36(7):1828-1846. PubMed ID: 30017503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial interactions with uranium: an environmental perspective.
    Merroun ML; Selenska-Pobell S
    J Contam Hydrol; 2008 Dec; 102(3-4):285-95. PubMed ID: 19008016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface.
    Beazley MJ; Martinez RJ; Sobecky PA; Webb SM; Taillefert M
    Environ Sci Technol; 2007 Aug; 41(16):5701-7. PubMed ID: 17874776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic role of pH in microbial reduction of uranium(VI) in the presence of bicarbonate.
    Xie J; Wang J; Lin J; Zhou X
    Environ Pollut; 2018 Nov; 242(Pt A):659-666. PubMed ID: 30025339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The remediation of uranium-contaminated groundwater via bioreduction coupled to biomineralization with different pH and electron donors.
    Wang G; Liu Y; Wang J; Xiang J; Zeng T; Li S; Song J; Zhang Z; Liu J
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):23096-23109. PubMed ID: 36316554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress of uranium-contaminated soil bioremediation technology.
    Cheng C; Chen L; Guo K; Xie J; Shu Y; He S; Xiao F
    J Environ Radioact; 2022 Jan; 241():106773. PubMed ID: 34781090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uranium reduction.
    Wall JD; Krumholz LR
    Annu Rev Microbiol; 2006; 60():149-66. PubMed ID: 16704344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient immobilization of environmental uranium contamination with Pseudomonas stutzeri by biosorption, biomineralization, and bioreduction.
    Yu Q; Yuan Y; Feng L; Sun W; Lin K; Zhang J; Zhang Y; Wang H; Wang N; Peng Q
    J Hazard Mater; 2022 Feb; 424(Pt D):127758. PubMed ID: 34801303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Mechanisms Underlying Bacterial Uranium Resistance.
    Rogiers T; Van Houdt R; Williamson A; Leys N; Boon N; Mijnendonckx K
    Front Microbiol; 2022; 13():822197. PubMed ID: 35359714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments.
    Lakaniemi AM; Douglas GB; Kaksonen AH
    J Hazard Mater; 2019 Jun; 371():198-212. PubMed ID: 30851673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Potential role of arbuscular mycorrhiza in bioremediation of uranium contaminated environments].
    Chen BD; Chen MM; Bai R
    Huan Jing Ke Xue; 2011 Mar; 32(3):809-16. PubMed ID: 21634182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects and driving mechanisms of bioremediation on groundwater after the neutral in situ leaching of uranium.
    Lian G; An Y; Sun J; Yang B; Shen Z
    Sci Total Environ; 2024 Oct; 946():174406. PubMed ID: 38964395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Donor-dependent extent of uranium reduction for bioremediation of contaminated sediment microcosms.
    Madden AS; Palumbo AV; Ravel B; Vishnivetskaya TA; Phelps TJ; Schadt CW; Brandt CC
    J Environ Qual; 2009; 38(1):53-60. PubMed ID: 19141795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biochemical behavior and mechanism of uranium(Ⅵ) bioreduction induced by natural Bacillus thuringiensis.
    Chen S; Gong J; Cheng Y; Guo Y; Li F; Lan T; Yang Y; Yang J; Liu N; Liao J
    J Environ Sci (China); 2024 Feb; 136():372-381. PubMed ID: 37923447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioreduction of U(VI) and stability of immobilized uranium under suboxic conditions.
    Hu N; Ding DX; Li SM; Tan X; Li GY; Wang YD; Xu F
    J Environ Radioact; 2016 Apr; 154():60-7. PubMed ID: 26854555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for chromium bioremediation of tannery effluent.
    Garg SK; Tripathi M; Srinath T
    Rev Environ Contam Toxicol; 2012; 217():75-140. PubMed ID: 22350558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation techniques for uranium removal from polluted environment - Review on methods, mechanism and toxicology.
    Akash S; Sivaprakash B; Raja VCV; Rajamohan N; Muthusamy G
    Environ Pollut; 2022 Jun; 302():119068. PubMed ID: 35240271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uranium bioprecipitation mediated by a phosphate-solubilizing Enterobacter sp. N1-10 and remediation of uranium-contaminated soil.
    Yu X; Xiong F; Zhou C; Luo Z; Zhou Z; Chen J; Sun K
    Sci Total Environ; 2024 Jan; 906():167688. PubMed ID: 37820798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance of solid-phase U(VI) to microbial reduction during in situ bioremediation of uranium-contaminated groundwater.
    Ortiz-Bernad I; Anderson RT; Vrionis HA; Lovley DR
    Appl Environ Microbiol; 2004 Dec; 70(12):7558-60. PubMed ID: 15574961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.