These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29050823)

  • 21. Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes.
    Oyarhossein MA; Alizadeh A; Habibi M; Makkiabadi M; Daman M; Safarpour H; Jung DW
    Sci Rep; 2020 Mar; 10(1):5616. PubMed ID: 32221331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On modeling wave dispersion characteristics of protein lipid nanotubules.
    Ebrahimi F; Dabbagh A
    J Biomech; 2018 Aug; 77():1-7. PubMed ID: 30006235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electromechanical Analysis of Flexoelectric Nanosensors Based on Nonlocal Elasticity Theory.
    Su Y; Zhou Z
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33291573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hygro-Thermal Vibrations of Porous FG Nano-Beams Based on Local/Nonlocal Stress Gradient Theory of Elasticity.
    Penna R; Feo L; Lovisi G; Fabbrocino F
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlocal Free Vibration of Embedded Short-Fiber-Reinforced Nano-/Micro-Rods with Deformable Boundary Conditions.
    Civalek Ö; Uzun B; Yaylı MÖ
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Critical Temperatures for Vibrations and Buckling of Magneto-Electro-Elastic Nonlocal Strain Gradient Plates.
    Tocci Monaco G; Fantuzzi N; Fabbrocino F; Luciano R
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On Nonlinear Bending Study of a Piezo-Flexomagnetic Nanobeam Based on an Analytical-Numerical Solution.
    Malikan M; Eremeyev VA
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32899997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radial elasticity of self-assembled lipid tubules.
    Zhao Y; Tamhane K; Zhang X; An L; Fang J
    ACS Nano; 2008 Jul; 2(7):1466-72. PubMed ID: 19206316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory.
    Najaafi N; Jamali M; Habibi M; Sadeghi S; Jung DW; Nabipour N
    J Biomol Struct Dyn; 2021 Apr; 39(7):2543-2554. PubMed ID: 32242490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development an efficient calibrated nonlocal plate model for nonlinear axial instability of zirconia nanosheets using molecular dynamics simulation.
    Sahmani S; Fattahi AM
    J Mol Graph Model; 2017 Aug; 75():20-31. PubMed ID: 28550738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear dynamic stability of piezoelectric thermoelastic electromechanical resonators.
    SoltanRezaee M; Bodaghi M
    Sci Rep; 2020 Feb; 10(1):2982. PubMed ID: 32076058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient large amplitude primary resonance in in-extensional nanocapacitors: Nonlinear mean curvature component.
    Rahmanian S; Hosseini-Hashemi S; SoltanRezaee M
    Sci Rep; 2019 Dec; 9(1):20256. PubMed ID: 31882875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vibration Characteristics of Magnetostrictive Composite Cantilever Resonator with Nonlocal Effect.
    Xu Y; Shang X; Xu K
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlinear modeling and dynamic analysis of bioengineering hyper-elastic tubes based on different material models.
    Mirjavadi SS; Forsat M; Badnava S
    Biomech Model Mechanobiol; 2020 Jun; 19(3):971-983. PubMed ID: 31848845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory.
    Zhang X; Shamsodin M; Wang H; NoormohammadiArani O; Khan AM; Habibi M; Al-Furjan MSH
    J Biomol Struct Dyn; 2021 Jun; 39(9):3128-3143. PubMed ID: 32338161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Static analysis of rectangular nanoplates using trigonometric shear deformation theory based on nonlocal elasticity theory.
    Nami MR; Janghorban M
    Beilstein J Nanotechnol; 2013 Dec; 4():968-73. PubMed ID: 24455455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic stability of the euler nanobeam subjected to inertial moving nanoparticles based on the nonlocal strain gradient theory.
    Hashemian M; Jasim DJ; Sajadi SM; Khanahmadi R; Pirmoradian M; Salahshour S
    Heliyon; 2024 May; 10(9):e30231. PubMed ID: 38737259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Modified Couple Stress Elasticity for Non-Uniform Composite Laminated Beams Based on the Ritz Formulation.
    Jouneghani FZ; Babamoradi H; Dimitri R; Tornabene F
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32204431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory.
    Li XF; Tang GJ; Shen ZB; Lee KY
    Ultrasonics; 2015 Jan; 55():75-84. PubMed ID: 25149195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vibration and Buckling of Shear Deformable Functionally Graded Nanoporous Metal Foam Nanoshells.
    Zhang Y; Zhang F
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30781404
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.