These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 29051489)

  • 1. Genomic landscape associated with potential response to anti-CTLA-4 treatment in cancers.
    Ock CY; Hwang JE; Keam B; Kim SB; Shim JJ; Jang HJ; Park S; Sohn BH; Cha M; Ajani JA; Kopetz S; Lee KW; Kim TM; Heo DS; Lee JS
    Nat Commun; 2017 Oct; 8(1):1050. PubMed ID: 29051489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CTLA-4 blockade and the renaissance of cancer immunotherapy.
    Mocellin S; Nitti D
    Biochim Biophys Acta; 2013 Dec; 1836(2):187-96. PubMed ID: 23748107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of biomarkers to predict response to immunotherapy in cancer: Volume I - pre-analytical and analytical validation.
    Masucci GV; Cesano A; Hawtin R; Janetzki S; Zhang J; Kirsch I; Dobbin KK; Alvarez J; Robbins PB; Selvan SR; Streicher HZ; Butterfield LH; Thurin M
    J Immunother Cancer; 2016; 4():76. PubMed ID: 27895917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breakthrough of the year 2013. Cancer immunotherapy.
    Couzin-Frankel J
    Science; 2013 Dec; 342(6165):1432-3. PubMed ID: 24357284
    [No Abstract]   [Full Text] [Related]  

  • 5. Therapeutic use of anti-CTLA-4 antibodies.
    Blank CU; Enk A
    Int Immunol; 2015 Jan; 27(1):3-10. PubMed ID: 25038057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy.
    Davoli T; Uno H; Wooten EC; Elledge SJ
    Science; 2017 Jan; 355(6322):. PubMed ID: 28104840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells.
    Foy SP; Mandl SJ; dela Cruz T; Cote JJ; Gordon EJ; Trent E; Delcayre A; Breitmeyer J; Franzusoff A; Rountree RB
    Cancer Immunol Immunother; 2016 May; 65(5):537-49. PubMed ID: 26961085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breaking immune tolerance by targeting CD25+ regulatory T cells is essential for the anti-tumor effect of the CTLA-4 blockade in an HLA-DR transgenic mouse model of prostate cancer.
    Klyushnenkova EN; Riabov VB; Kouiavskaia DV; Wietsma A; Zhan M; Alexander RB
    Prostate; 2014 Oct; 74(14):1423-32. PubMed ID: 25111463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ctla-4 blockade plus adoptive T-cell transfer promotes optimal melanoma immunity in mice.
    Mahvi DA; Meyers JV; Tatar AJ; Contreras A; Suresh M; Leverson GE; Sen S; Cho CS
    J Immunother; 2015; 38(2):54-61. PubMed ID: 25658614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards In Silico Prediction of the Immune-Checkpoint Blockade Response.
    Chen K; Ye H; Lu XJ; Sun B; Liu Q
    Trends Pharmacol Sci; 2017 Dec; 38(12):1041-1051. PubMed ID: 29089139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic analysis of 63,220 tumors reveals insights into tumor uniqueness and targeted cancer immunotherapy strategies.
    Hartmaier RJ; Charo J; Fabrizio D; Goldberg ME; Albacker LA; Pao W; Chmielecki J
    Genome Med; 2017 Feb; 9(1):16. PubMed ID: 28231819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of CTLA-4 and PD-1 in anti-tumor immune response and their potential efficacy against osteosarcoma.
    Wang SD; Li HY; Li BH; Xie T; Zhu T; Sun LL; Ren HY; Ye ZM
    Int Immunopharmacol; 2016 Sep; 38():81-9. PubMed ID: 27258185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monotherapeutically nonactive CTLA-4 blockade results in greatly enhanced antitumor effects when combined with tumor-targeted superantigens in a B16 melanoma model.
    Sundstedt A; Celander M; Eriksson H; Törngren M; Hedlund G
    J Immunother; 2012 May; 35(4):344-53. PubMed ID: 22495392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of antitumor immunity by combining anti-cytotoxic T lymphocyte antigen-4 antibodies and cryotreated tumor lysate-pulsed dendritic cells in murine osteosarcoma.
    Kawano M; Itonaga I; Iwasaki T; Tsumura H
    Oncol Rep; 2013 Mar; 29(3):1001-6. PubMed ID: 23291864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Checkpoint blocking antibodies in cancer immunotherapy.
    Kyi C; Postow MA
    FEBS Lett; 2014 Jan; 588(2):368-76. PubMed ID: 24161671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the crosstalk between CTLA-4 and NKG2D in the development of anti-CTLA-4 treatment strategies.
    Demaria S; Dustin ML
    Immunotherapy; 2013 Feb; 5(2):109-12. PubMed ID: 23413900
    [No Abstract]   [Full Text] [Related]  

  • 17. Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies.
    Philips GK; Atkins M
    Int Immunol; 2015 Jan; 27(1):39-46. PubMed ID: 25323844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined immunotherapy: CTLA-4 blockade potentiates anti-tumor response induced by transcutaneous immunization.
    Rausch J; Lopez PA; Bialojan A; Denny M; Langguth P; Probst HC; Schild H; Radsak MP
    J Dermatol Sci; 2017 Sep; 87(3):300-306. PubMed ID: 28666747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic and pharmacologic insights on immune checkpoint inhibitors.
    Sweis RF; Luke JJ
    Pharmacol Res; 2017 Jun; 120():1-9. PubMed ID: 28323141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer immunotherapy.
    McNutt M
    Science; 2013 Dec; 342(6165):1417. PubMed ID: 24357273
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.