These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29051559)

  • 1. Comparative sphingolipidomics of disease-causing trypanosomatids reveal unique lifecycle- and taxonomy-specific lipid chemistries.
    Guan XL; Mäser P
    Sci Rep; 2017 Oct; 7(1):13617. PubMed ID: 29051559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi.
    Parsons M; Worthey EA; Ward PN; Mottram JC
    BMC Genomics; 2005 Sep; 6():127. PubMed ID: 16164760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and cytotoxic effects of camptothecin, a topoisomerase I inhibitor, on trypanosomes and Leishmania.
    Bodley AL; Shapiro TA
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3726-30. PubMed ID: 7731973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists.
    Balcazar DE; Vanrell MC; Romano PS; Pereira CA; Goldbaum FA; Bonomi HR; Carrillo C
    PLoS Negl Trop Dis; 2017 Apr; 11(4):e0005513. PubMed ID: 28406895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography-tandem mass spectrometry: "inside-out" sphingolipidomics.
    Sullards MC; Allegood JC; Kelly S; Wang E; Haynes CA; Park H; Chen Y; Merrill AH
    Methods Enzymol; 2007; 432():83-115. PubMed ID: 17954214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans.
    de Castro Neto AL; da Silveira JF; Mortara RA
    Front Cell Infect Microbiol; 2021; 11():669079. PubMed ID: 33937106
    [No Abstract]   [Full Text] [Related]  

  • 7. The Trypanosomatids Cell Cycle: A Brief Report.
    Passos AO; Assis LHC; Ferri YG; da Silva VL; da Silva MS; Cano MIN
    Methods Mol Biol; 2022; 2579():25-34. PubMed ID: 36045195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting calcium homeostasis as the therapy of Chagas' disease and leishmaniasis - a review.
    Benaim B; Garcia CR
    Trop Biomed; 2011 Dec; 28(3):471-81. PubMed ID: 22433874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of bifunctional sphingolipid Δ4-desaturases/C4-hydroxylases of trypanosomatids by liquid chromatography-electrospray tandem mass spectrometry.
    Vacchina P; Tripodi KE; Escalante AM; Uttaro AD
    Mol Biochem Parasitol; 2012 Jul; 184(1):29-38. PubMed ID: 22542487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for trypanosomatid aldo-keto reductases in methylglyoxal, prostaglandin and isoprostane metabolism.
    Roberts AJ; Dunne J; Scullion P; Norval S; Fairlamb AH
    Biochem J; 2018 Aug; 475(16):2593-2610. PubMed ID: 30045874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Zymography in Trypanosomiasis Studies.
    Monte JFS; Moreno CJG; Monteiro JPMFL; de Oliveira Rocha HA; Ribeiro AR; Silva MS
    Methods Mol Biol; 2017; 1626():213-220. PubMed ID: 28608214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential Drug Targets in the Pentose Phosphate Pathway of Trypanosomatids.
    Loureiro I; Faria J; Santarem N; Smith TK; Tavares J; Cordeiro-da-Silva A
    Curr Med Chem; 2018; 25(39):5239-5265. PubMed ID: 29210635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytotoxicity of (2,2':6',2''-terpyridine)platinum(II) complexes to Leishmania donovani, Trypanosoma cruzi, and Trypanosoma brucei.
    Lowe G; Droz AS; Vilaivan T; Weaver GW; Tweedale L; Pratt JM; Rock P; Yardley V; Croft SL
    J Med Chem; 1999 Mar; 42(6):999-1006. PubMed ID: 10090783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basic Biology of Trypanosoma cruzi.
    Zuma AA; Dos Santos Barrias E; de Souza W
    Curr Pharm Des; 2021; 27(14):1671-1732. PubMed ID: 33272165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa.
    de Souza W; Sant'Anna C; Cunha-e-Silva NL
    Prog Histochem Cytochem; 2009; 44(2):67-124. PubMed ID: 19410686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the intracellular survival gene kit of trypanosomatid parasites.
    Bartholomeu DC; de Paiva RM; Mendes TA; DaRocha WD; Teixeira SM
    PLoS Pathog; 2014 Dec; 10(12):e1004399. PubMed ID: 25474314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Hsp70 chaperones of the Tritryps are characterized by unusual features and novel members.
    Louw CA; Ludewig MH; Mayer J; Blatch GL
    Parasitol Int; 2010 Dec; 59(4):497-505. PubMed ID: 20816852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingolipids in parasitic protozoa.
    Zhang K; Bangs JD; Beverley SM
    Adv Exp Med Biol; 2010; 688():238-48. PubMed ID: 20919659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biology of human pathogenic trypanosomatids: epidemiology, lifecycle and ultrastructure.
    Rodrigues JC; Godinho JL; de Souza W
    Subcell Biochem; 2014; 74():1-42. PubMed ID: 24264239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of constitutive and inducible trans-sialylation dominant-negative phenotypes in Trypanosoma brucei and Trypanosoma cruzi.
    Engstler M; Wirtz E; Cross GA
    Glycobiology; 1997 Oct; 7(7):955-64. PubMed ID: 9363438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.