BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 2905168)

  • 1. Energy-induced modulation of the kinetics of oxidative phosphorylation and reverse electron transfer.
    Hekman C; Matsuno-Yagi A; Hatefi Y
    Biochemistry; 1988 Sep; 27(19):7559-65. PubMed ID: 2905168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncoupling of oxidative phosphorylation: different effects of lipophilic weak acids and electrogenic ionophores on the kinetics of ATP synthesis.
    Matsuno-Yagi A; Hatefi Y
    Biochemistry; 1989 May; 28(10):4367-74. PubMed ID: 2475167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the mechanism of oxidative phosphorylation. ATP synthesis by submitochondrial particles inhibited at F0 by venturicidin and organotin compounds.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1993 Mar; 268(9):6168-73. PubMed ID: 8454592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the mechanism of oxidative phosphorylation. Catalytic site cooperativity in ATP synthesis.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1985 Nov; 260(27):11424-7. PubMed ID: 4055778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes.
    Herweijer MA; Berden JA; Kemp A; Slater EC
    Biochim Biophys Acta; 1985 Aug; 809(1):81-9. PubMed ID: 2862915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the mechanism of oxidative phosphorylation. Different effects of F0 inhibitors on unisite and multisite ATP hydrolysis by bovine submitochondrial particles.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1993 Jan; 268(3):1539-45. PubMed ID: 8380571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal inactivation of electron-transport functions and F0F1-ATPase activities.
    Tomita M; Knox BE; Tsong TY
    Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic hydrolysis and synthesis of adenosine 5'-triphosphate by stereoisomers of covalently labeled F1-adenosinetriphosphatase and reconstituted submitochondrial particles.
    Wang JH; Cesana J; Wu JC
    Biochemistry; 1987 Aug; 26(17):5527-33. PubMed ID: 2890376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of the turnover number of bovine heart F0F1 complexes for ATP synthesis.
    Matsuno-Yagi A; Hatefi Y
    Biochemistry; 1988 Jan; 27(1):335-40. PubMed ID: 2894847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP synthesis catalyzed by the mitochondrial F1-F0 ATP synthase is not a reversal of its ATPase activity.
    Syroeshkin AV; Vasilyeva EA; Vinogradov AD
    FEBS Lett; 1995 Jun; 366(1):29-32. PubMed ID: 7789510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles.
    Scholes TA; Hinkle PC
    Biochemistry; 1984 Jul; 23(14):3341-5. PubMed ID: 6087893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the mechanism of oxidative phosphorylation. ADP promotion of GDP phosphorylation.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1990 Nov; 265(33):20308-13. PubMed ID: 2243094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition by trifluoperazine of ATP synthesis and hydrolysis by particulate and soluble mitochondrial F1: competition with H2PO4-.
    García JJ; Tuena de Gómez-Puyou M; Gómez-Puyou A
    J Bioenerg Biomembr; 1995 Feb; 27(1):127-36. PubMed ID: 7629044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial uncoupling, or inhibition of electron transport rate, have equivalent effects on the relationship between the rate of ATP synthesis and proton-motive force in submitochondrial particles.
    Catia Sorgato M; Lippe G; Seren S; Ferguson SJ
    FEBS Lett; 1985 Feb; 181(2):323-7. PubMed ID: 2982663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ; Doroshow JH
    J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic modalities of ATP synthesis. Regulation by the mitochondrial respiratory chain.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1986 Oct; 261(30):14031-8. PubMed ID: 2945814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of energy in oxidative phosphorylation.
    Matsuno-Yagi A; Hatefi Y
    J Bioenerg Biomembr; 1988 Aug; 20(4):481-502. PubMed ID: 2906062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A competitive inhibition of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) by ADP-ribose.
    Zharova TV; Vinogradov AD
    Biochim Biophys Acta; 1997 Jul; 1320(3):256-64. PubMed ID: 9230920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative phosphorylation in a hybrid system containing bovine heart membranes and pea mitochondrial F1-ATPase.
    Horak H; Packer M; Horak A
    Biochim Biophys Acta; 1988 Apr; 933(2):389-92. PubMed ID: 2895668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.