These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 29051856)

  • 21. Research Progress and Perspective on Lithium/Sodium Metal Anodes for Next-Generation Rechargeable Batteries.
    Patrike A; Yadav P; Shelke V; Shelke M
    ChemSusChem; 2022 Jul; 15(14):e202200504. PubMed ID: 35560981
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hollow CoS/C Structures for High-Performance Li, Na, K Ion Batteries.
    Liu Y; Li X; Zhang F; Zhang L; Zhang T; Li C; Jin Z; Wu Y; Du Z; Jiao H; Jiang Y; Yan Y; Li Q; Kong W
    Front Chem; 2022; 10():845742. PubMed ID: 35360542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards K-Ion and Na-Ion Batteries as "Beyond Li-Ion".
    Kubota K; Dahbi M; Hosaka T; Kumakura S; Komaba S
    Chem Rec; 2018 Apr; 18(4):459-479. PubMed ID: 29442429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rechargeable Mg-M (M = Li, Na and K) dual-metal-ion batteries based on a Berlin green cathode and a metallic Mg anode.
    Zhang Y; Shen J; Li X; Chen Z; Cao SA; Li T; Xu F
    Phys Chem Chem Phys; 2019 Sep; 21(36):20269-20275. PubMed ID: 31490519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly Reversible Na-Intercalation into Graphite Recovered from Spent Li-Ion Batteries for High-Energy Na-Ion Capacitor.
    Divya ML; Natarajan S; Lee YS; Aravindan V
    ChemSusChem; 2020 Nov; 13(21):5654-5663. PubMed ID: 32876399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accessing Structural, Electronic, Transport and Mesoscale Properties of Li-GICs via a Complete DFTB Model with Machine-Learned Repulsion Potential.
    Anniés S; Panosetti C; Voronenko M; Mauth D; Rahe C; Scheurer C
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A glance of the layered transition metal oxide cathodes in sodium and lithium-ion batteries: difference and similarities.
    Xiao B; Omenya F; Reed D; Li X
    Nanotechnology; 2021 Jul; 32(42):. PubMed ID: 34243170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances and perspectives on intercalation layered compounds part 1: design and applications in the field of energy.
    Bisio C; Brendlé J; Cahen S; Feng Y; Hwang SJ; Melanova K; Nocchetti M; O'Hare D; Rabu P; Leroux F
    Dalton Trans; 2024 Sep; 53(35):14525-14550. PubMed ID: 39057836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational Investigation of Carbon Based Anode Materials for Li- and Post-Li- Ion Batteries.
    Azizi J; Groß A; Euchner H
    ChemSusChem; 2024 Jul; 17(14):e202301493. PubMed ID: 38411370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries.
    Kim H; Yoon G; Lim K; Kang K
    Chem Commun (Camb); 2016 Oct; 52(85):12618-12621. PubMed ID: 27709171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intercalation of argon in honeycomb structures towards promising strategy for rechargeable Li-ion batteries.
    Duden EI; Savacı U; Turan S; Sevik C; Demiroglu I
    J Phys Condens Matter; 2022 Dec; 35(8):. PubMed ID: 36541523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries.
    Jache B; Binder JO; Abe T; Adelhelm P
    Phys Chem Chem Phys; 2016 Jun; 18(21):14299-316. PubMed ID: 27165175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ion-Migration Mechanism: An Overall Understanding of Anionic Redox Activity in Metal Oxide Cathodes of Li/Na-Ion Batteries.
    Lai Y; Xie H; Li P; Li B; Zhao A; Luo L; Jiang Z; Fang Y; Chen S; Ai X; Xia D; Cao Y
    Adv Mater; 2022 Nov; 34(47):e2206039. PubMed ID: 36165216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances in Layered Metal-Oxide Cathodes for Application in Potassium-Ion Batteries.
    Nathan MGT; Yu H; Kim GT; Kim JH; Cho JS; Kim J; Kim JK
    Adv Sci (Weinh); 2022 Jun; 9(18):e2105882. PubMed ID: 35478355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical Insight into the Sodium-Ion Storage Mechanism on a Hard Carbon Anode.
    Chen X; Fang Y; Tian J; Lu H; Ai X; Yang H; Cao Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18914-18922. PubMed ID: 33861567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Progress of NiO-Based Anodes for High-Performance Li-Ion Batteries.
    Zhou G; Ding W; Guan Y; Wang T; Liu C; Zhang L; Yin J; Fu Y
    Chem Rec; 2022 Oct; 22(10):e202200111. PubMed ID: 35750643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rechargeable LiNi
    Yang Y; Chen Y; Tan L; Zhang J; Li N; Ji X; Zhu Y
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202209619. PubMed ID: 36036208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Novel and Sustainable Approach to Enhance the Li-Ion Storage Capability of Recycled Graphite Anode from Spent Lithium-Ion Batteries.
    Bhar M; Bhattacharjee U; Sarma D; Krishnamurthy S; Yalamanchili K; Mahata A; Martha SK
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26606-26618. PubMed ID: 37226804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.