BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29051939)

  • 1. Mechanistic investigation on N → C
    Zhu L; Yuan H; Zhang J
    Org Biomol Chem; 2017 Nov; 15(43):9127-9138. PubMed ID: 29051939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aza-oxy-carbanion relay via non-Brook rearrangement: efficient synthesis of furo[3,2-c]pyridinones.
    Liang F; Lin S; Wei Y
    J Am Chem Soc; 2011 Feb; 133(6):1781-3. PubMed ID: 21218811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tandem base-promoted ring-opening/Brook rearrangement/allylic alkylation of O-silyl cyanohydrins of beta-silyl-alpha,beta-epoxyaldehyde: scope and mechanism.
    Sasaki M; Kawanishi E; Nakai Y; Matsumoto T; Yamaguchi K; Takeda K
    J Org Chem; 2003 Nov; 68(24):9330-9. PubMed ID: 14629154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insights on DBU catalyzed β-amination of nbs to chalcone driving by water: Multiple roles of water.
    Yuan H; Zhang J
    J Comput Chem; 2017 Mar; 38(7):438-445. PubMed ID: 28114731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrile anion cyclization with epoxysilanes followed by Brook rearrangement/ring-opening of cyclopropane nitriles/alkylation.
    Okugawa S; Masu H; Yamaguchi K; Takeda K
    J Org Chem; 2005 Dec; 70(25):10515-23. PubMed ID: 16323866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic investigation inspired "on water" reaction for hydrobromic acid-catalyzed Friedel-Crafts-type reaction of β-naphthol and formaldehyde.
    Cao S; Yuan H; Yang Y; Wang M; Zhang X; Zhang J
    J Comput Chem; 2017 Oct; 38(26):2268-2275. PubMed ID: 28696541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism study of the intramolecular anti-Michael addition of N-alkylfurylacrylacetamides.
    Yuan H; Zheng Y; Zhang J
    J Org Chem; 2012 Oct; 77(19):8744-9. PubMed ID: 22967167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT study of the mechanisms of in water Au(I)-catalyzed tandem [3,3]-rearrangement/Nazarov reaction/[1,2]-hydrogen shift of enynyl acetates: a proton-transport catalysis strategy in the water-catalyzed [1,2]-hydrogen shift.
    Shi FQ; Li X; Xia Y; Zhang L; Yu ZX
    J Am Chem Soc; 2007 Dec; 129(50):15503-12. PubMed ID: 18027935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anion relay chemistry: an effective tactic for diversity oriented synthesis.
    Smith AB; Xian M
    J Am Chem Soc; 2006 Jan; 128(1):66-7. PubMed ID: 16390124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tandem base-promoted ring opening/brook rearrangement/allylic alkylation of O-silyl cyanohydrins of beta-silyl-alpha,beta-epoxyaldehydes.
    Takeda K; Kawanishi E; Sasaki M; Takahashi Y; Yamaguchi K
    Org Lett; 2002 May; 4(9):1511-4. PubMed ID: 11975616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of functionalized carbocycles via base-promoted ring opening/Brook rearrangement/allylic alkylation of gamma-silyl-beta,gamma-epoxybutanenitrile followed by nitrile anion cyclization with bis-electrophiles.
    Matsumoto T; Masu H; Yamaguchi K; Takeda K
    Org Lett; 2004 Nov; 6(23):4367-9. PubMed ID: 15524485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The [1,5]-Brook rearrangement: an initial application in anion relay chemistry.
    Smith AB; Xian M; Kim WS; Kim DS
    J Am Chem Soc; 2006 Sep; 128(38):12368-9. PubMed ID: 16984158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory favors a stepwise mechanism of porphyrin degradation by a ferric hydroperoxide model of the active species of heme oxygenase.
    Kumar D; de Visser SP; Shaik S
    J Am Chem Soc; 2005 Jun; 127(22):8204-13. PubMed ID: 15926850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrotrioxides rather than cyclic tetraoxides (tetraoxolanes) as the primary reaction intermediates in the low-temperature ozonation of aldehydes. The case of benzaldehyde.
    Cerkovnik J; Plesnicar B; Koller J; Tuttle T
    J Org Chem; 2009 Jan; 74(1):96-101. PubMed ID: 19007299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study.
    Gao H; Ke Z; DeYonker NJ; Wang J; Xu H; Mao ZW; Phillips DL; Zhao C
    J Am Chem Soc; 2011 Mar; 133(9):2904-15. PubMed ID: 21319769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unexpected Propargylic Retro-Brook Rearrangements in Alkynes.
    Wang X; Gao Q; Buevich AV; Yasuda N; Zhang Y; Yang RS; Zhang LK; Martin GE; Williamson RT
    J Org Chem; 2019 Aug; 84(16):10024-10031. PubMed ID: 31283876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organocatalyzed anion relay leading to functionalized 2,3-dihydrofurans.
    Li M; Lin S; Dong Z; Zhang X; Liang F; Zhang J
    Org Lett; 2013 Aug; 15(15):3978-81. PubMed ID: 23869601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the somersault rearrangement in the oxidation step for flavin monooxygenases (FMO). A comparison between FMO and conventional xenobiotic oxidation with hydroperoxides.
    Bach RD
    J Phys Chem A; 2011 Oct; 115(40):11087-100. PubMed ID: 21888352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cation Bridge Mediating Homo- and Cross-Coupling in Copper-Catalyzed Reductive Coupling of Benzaldehyde and Benzophenone.
    Jia X; Wang Q; Huang F; Liu J; Wang W; Yang C; Sun C; Chen D
    Inorg Chem; 2022 Nov; 61(45):18033-18043. PubMed ID: 36315847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.