BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 29052093)

  • 1. Emerging small molecule approaches to enhance the antimyeloma benefit of proteasome inhibitors.
    Driscoll JJ; Brailey M
    Cancer Metastasis Rev; 2017 Dec; 36(4):585-598. PubMed ID: 29052093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The proteasome and proteasome inhibitors in multiple myeloma.
    Gandolfi S; Laubach JP; Hideshima T; Chauhan D; Anderson KC; Richardson PG
    Cancer Metastasis Rev; 2017 Dec; 36(4):561-584. PubMed ID: 29196868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteasome inhibitors for multiple myeloma.
    Okazuka K; Ishida T
    Jpn J Clin Oncol; 2018 Sep; 48(9):785-793. PubMed ID: 30102324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutically targeting the SUMOylation, Ubiquitination and Proteasome pathways as a novel anticancer strategy.
    Driscoll JJ; Dechowdhury R
    Target Oncol; 2010 Dec; 5(4):281-9. PubMed ID: 21125340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting Deubiquitinating Enzymes and Autophagy in Cancer.
    Mooneyham A; Bazzaro M
    Methods Mol Biol; 2017; 1513():49-59. PubMed ID: 27807830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the Immune Niche within the Bone Marrow Microenvironment: The Rise of Immunotherapy in Multiple Myeloma.
    Podar K; Jager D
    Curr Cancer Drug Targets; 2017; 17(9):782-805. PubMed ID: 28201977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the ʟ-glutamine transporter ASCT2 sensitizes plasma cell myeloma cells to proteasome inhibitors.
    Prelowska MK; Mehlich D; Ugurlu MT; Kedzierska H; Cwiek A; Kosnik A; Kaminska K; Marusiak AA; Nowis D
    Cancer Lett; 2021 Jun; 507():13-25. PubMed ID: 33713737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual Inhibition of EZH2 and EZH1 Sensitizes PRC2-Dependent Tumors to Proteasome Inhibition.
    Rizq O; Mimura N; Oshima M; Saraya A; Koide S; Kato Y; Aoyama K; Nakajima-Takagi Y; Wang C; Chiba T; Ma A; Jin J; Iseki T; Nakaseko C; Iwama A
    Clin Cancer Res; 2017 Aug; 23(16):4817-4830. PubMed ID: 28490465
    [No Abstract]   [Full Text] [Related]  

  • 9. Role of Immunotherapy in Targeting the Bone Marrow Microenvironment in Multiple Myeloma: An Evolving Therapeutic Strategy.
    Chung C
    Pharmacotherapy; 2017 Jan; 37(1):129-143. PubMed ID: 27870103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunoproteasome-selective and non-selective inhibitors: A promising approach for the treatment of multiple myeloma.
    Ettari R; Zappalà M; Grasso S; Musolino C; Innao V; Allegra A
    Pharmacol Ther; 2018 Feb; 182():176-192. PubMed ID: 28911826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seeking Convergence and Cure with New Myeloma Therapies.
    Choudhry P; Galligan D; Wiita AP
    Trends Cancer; 2018 Aug; 4(8):567-582. PubMed ID: 30064664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Updates to the drug-resistant mechanism of proteasome inhibitors in multiple myeloma.
    Bai Y; Su X
    Asia Pac J Clin Oncol; 2021 Feb; 17(1):29-35. PubMed ID: 32920949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased resistance to proteasome inhibitors in multiple myeloma mediated by cIAP2--implications for a combinatorial treatment.
    Fristedt Duvefelt C; Lub S; Agarwal P; Arngården L; Hammarberg A; Maes K; Van Valckenborgh E; Vanderkerken K; Jernberg Wiklund H
    Oncotarget; 2015 Aug; 6(24):20621-35. PubMed ID: 26036313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-molecule control of intracellular protein levels through modulation of the ubiquitin proteasome system.
    Buckley DL; Crews CM
    Angew Chem Int Ed Engl; 2014 Feb; 53(9):2312-30. PubMed ID: 24459094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging biological insights and novel treatment strategies in multiple myeloma.
    Gentile M; Recchia AG; Mazzone C; Morabito F
    Expert Opin Emerg Drugs; 2012 Sep; 17(3):407-38. PubMed ID: 22920042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance to proteasome inhibitors and other targeted therapies in myeloma.
    Wallington-Beddoe CT; Sobieraj-Teague M; Kuss BJ; Pitson SM
    Br J Haematol; 2018 Jul; 182(1):11-28. PubMed ID: 29676460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited treatment options in refractory multiple myeloma: promising therapeutic developments.
    Oriol A; Abril L; Ibarra G; Senin A
    Expert Rev Anticancer Ther; 2020 Jan; 20(1):31-44. PubMed ID: 31865804
    [No Abstract]   [Full Text] [Related]  

  • 18. Proteasome-associated deubiquitinases and cancer.
    Mofers A; Pellegrini P; Linder S; D'Arcy P
    Cancer Metastasis Rev; 2017 Dec; 36(4):635-653. PubMed ID: 29134486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquitin-proteasome system as a target for anticancer treatment-an update.
    Kim YJ; Lee Y; Shin H; Hwang S; Park J; Song EJ
    Arch Pharm Res; 2023 Jul; 46(7):573-597. PubMed ID: 37541992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering proteasomal deubiquitinating enzyme inhibitors for cancer therapy: lessons from rational design, nature and old drug reposition.
    Patel K; Ahmed ZS; Huang X; Yang Q; Ekinci E; Neslund-Dudas CM; Mitra B; Elnady FA; Ahn YH; Yang H; Liu J; Dou QP
    Future Med Chem; 2018 Sep; 10(17):2087-2108. PubMed ID: 30066579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.