BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 29052197)

  • 1. Profiling Histone Modifications in Synchronized Floral Tissues for Quantitative Resolution of Chromatin and Transcriptome Dynamics.
    Engelhorn J; Wellmer F; Carles CC
    Methods Mol Biol; 2018; 1675():271-296. PubMed ID: 29052197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin immunoprecipitation protocol for histone modifications and protein-DNA binding analyses in Arabidopsis.
    Pien S; Grossniklaus U
    Methods Mol Biol; 2010; 631():209-20. PubMed ID: 20204877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitatively profiling genome-wide patterns of histone modifications in Arabidopsis thaliana using ChIP-seq.
    Luo C; Lam E
    Methods Mol Biol; 2014; 1112():177-93. PubMed ID: 24478015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential ChIP Protocol for Profiling Bivalent Epigenetic Modifications (ReChIP).
    Desvoyes B; Sequeira-Mendes J; Vergara Z; Madeira S; Gutierrez C
    Methods Mol Biol; 2018; 1675():83-97. PubMed ID: 29052187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Rapid and Efficient ChIP Protocol to Profile Chromatin Binding Proteins and Epigenetic Modifications in Arabidopsis.
    Desvoyes B; Vergara Z; Sequeira-Mendes J; Madeira S; Gutierrez C
    Methods Mol Biol; 2018; 1675():71-82. PubMed ID: 29052186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling photoperiodic control of flowering by timely chromatin silencing of the florigen gene.
    He Y
    Nucleus; 2015; 6(3):179-82. PubMed ID: 25950625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SWP73 Subunits of Arabidopsis SWI/SNF Chromatin Remodeling Complexes Play Distinct Roles in Leaf and Flower Development.
    Sacharowski SP; Gratkowska DM; Sarnowska EA; Kondrak P; Jancewicz I; Porri A; Bucior E; Rolicka AT; Franzen R; Kowalczyk J; Pawlikowska K; Huettel B; Torti S; Schmelzer E; Coupland G; Jerzmanowski A; Koncz C; Sarnowski TJ
    Plant Cell; 2015 Jul; 27(7):1889-906. PubMed ID: 26106148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants.
    Saleh A; Alvarez-Venegas R; Avramova Z
    Nat Protoc; 2008; 3(6):1018-25. PubMed ID: 18536649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional roles of histone modification, chromatin remodeling and microRNAs in Arabidopsis flower development.
    Gan ES; Huang J; Ito T
    Int Rev Cell Mol Biol; 2013; 305():115-61. PubMed ID: 23890381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive and noninteractive roles of histone H2B monoubiquitination and H3K36 methylation in the regulation of active gene transcription and control of plant growth and development.
    Zhao W; Neyt P; Van Lijsebettens M; Shen WH; Berr A
    New Phytol; 2019 Jan; 221(2):1101-1116. PubMed ID: 30156703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation.
    Ryan PT; Ó'Maoiléidigh DS; Drost HG; Kwaśniewska K; Gabel A; Grosse I; Graciet E; Quint M; Wellmer F
    BMC Genomics; 2015 Jul; 16(1):488. PubMed ID: 26126740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene coexpression patterns during early development of the native Arabidopsis reproductive meristem: novel candidate developmental regulators and patterns of functional redundancy.
    Mantegazza O; Gregis V; Chiara M; Selva C; Leo G; Horner DS; Kater MM
    Plant J; 2014 Sep; 79(5):861-77. PubMed ID: 24923650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin Immunoprecipitation Protocol for Histone Modifications and Protein-DNA Binding Analyses in Arabidopsis.
    You W; Pien S; Grossniklaus U
    Methods Mol Biol; 2017; 1456():1-13. PubMed ID: 27770353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowering.
    You Y; Sawikowska A; Neumann M; Posé D; Capovilla G; Langenecker T; Neher RA; Krajewski P; Schmid M
    Nat Commun; 2017 May; 8():15120. PubMed ID: 28513600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes.
    Gregis V; Sessa A; Dorca-Fornell C; Kater MM
    Plant J; 2009 Nov; 60(4):626-37. PubMed ID: 19656343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SUPPRESSOR OF FRIGIDA3 encodes a nuclear ACTIN-RELATED PROTEIN6 required for floral repression in Arabidopsis.
    Choi K; Kim S; Kim SY; Kim M; Hyun Y; Lee H; Choe S; Kim SG; Michaels S; Lee I
    Plant Cell; 2005 Oct; 17(10):2647-60. PubMed ID: 16155178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant sciences. Deciding when to flower.
    Bastow R; Dean C
    Science; 2003 Dec; 302(5651):1695-6. PubMed ID: 14657484
    [No Abstract]   [Full Text] [Related]  

  • 18. ChIP-seq analysis of histone modifications at the core of the Arabidopsis circadian clock.
    Malapeira J; Mas P
    Methods Mol Biol; 2014; 1158():57-69. PubMed ID: 24792044
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Yu Y; Wang S; Wang Z; Gao R; Lee J
    Epigenetics; 2023 Dec; 18(1):2211362. PubMed ID: 37196184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orchestration of floral initiation by APETALA1.
    Kaufmann K; Wellmer F; Muiño JM; Ferrier T; Wuest SE; Kumar V; Serrano-Mislata A; Madueño F; Krajewski P; Meyerowitz EM; Angenent GC; Riechmann JL
    Science; 2010 Apr; 328(5974):85-9. PubMed ID: 20360106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.