These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 29052314)

  • 21. Visual Occlusion During Minimally Invasive Surgery: A Contemporary Review of Methods to Reduce Laparoscopic and Robotic Lens Fogging and Other Sources of Optical Loss.
    Manning TG; Perera M; Christidis D; Kinnear N; McGrath S; O'Beirne R; Zotov P; Bolton D; Lawrentschuk N
    J Endourol; 2017 Apr; 31(4):327-333. PubMed ID: 28075157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robotic endoscopy. A review of the literature.
    Visconti TAC; Otoch JP; Artifon ELA
    Acta Cir Bras; 2020; 35(2):e202000206. PubMed ID: 32348403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motion modelling and error compensation of a cable-driven continuum robot for applications to minimally invasive surgery.
    Qi F; Ju F; Bai D; Wang Y; Chen B
    Int J Med Robot; 2018 Dec; 14(6):e1932. PubMed ID: 30003671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinematic fundamentals of a biomechatronic laparoscopy system.
    Ortiz Simón JL; Minor Martínez A; Ordorica Flores R; Limón Aguilar JL; Suaste E
    Int J Med Robot; 2011 Sep; 7(3):276-81. PubMed ID: 21538773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexible endoscopic robot.
    Lomanto D; Wijerathne S; Ho LK; Phee LS
    Minim Invasive Ther Allied Technol; 2015 Feb; 24(1):37-44. PubMed ID: 25627436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An anthropomorphic design for a minimally invasive surgical system based on a survey of surgical technologies, techniques and training.
    Tzemanaki A; Walters P; Pipe AG; Melhuish C; Dogramadzi S
    Int J Med Robot; 2014 Sep; 10(3):368-78. PubMed ID: 24127331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Concept design of robotic modules for needlescopic surgery.
    Sen S; Harada K; Hewitt Z; Susilo E; Kobayashi E; Sakuma I
    Minim Invasive Ther Allied Technol; 2017 Aug; 26(4):232-239. PubMed ID: 28635406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robot-assisted minimally invasive esophagectomy.
    van Hillegersberg R; Seesing MF; Brenkman HJ; Ruurda JP
    Chirurg; 2017 Jan; 88(Suppl 1):7-11. PubMed ID: 27470056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accommodation and pupil responses to random-dot stereograms.
    Suryakumar R; Allison R
    J Optom; 2016; 9(1):40-6. PubMed ID: 25891121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Snake-like surgical forceps for robot-assisted minimally invasive surgery.
    Jin X; Zhao J; Feng M; Hao L; Li Q
    Int J Med Robot; 2018 Aug; 14(4):e1908. PubMed ID: 29570936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robotic natural orifice transluminal endoscopic surgery (R-NOTES): literature review and prototype system.
    Azizi Koutenaei B; Wilson E; Monfaredi R; Peters C; Kronreif G; Cleary K
    Minim Invasive Ther Allied Technol; 2015 Feb; 24(1):18-23. PubMed ID: 25539996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Depth cue reliance in surgeons and medical students.
    Shah J; Buckley D; Frisby J; Darzi A
    Surg Endosc; 2003 Sep; 17(9):1472-4. PubMed ID: 12802650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surgical robots for SPL and NOTES: a review.
    Zhao J; Feng B; Zheng MH; Xu K
    Minim Invasive Ther Allied Technol; 2015 Feb; 24(1):8-17. PubMed ID: 25597629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using motion parallax for laparoscopic surgery.
    Su H; Li J; Zhang H; Li J; Wang S
    Int J Med Robot; 2016 Sep; 12(3):399-409. PubMed ID: 26443699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accommodation and vergence latencies in human infants.
    Tondel GM; Candy TR
    Vision Res; 2008 Feb; 48(4):564-76. PubMed ID: 18199466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators.
    Xu W; Chen J; Lau HYK; Ren H
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27647806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Basics of three-dimensional endoscopic vision.
    Zobel J
    Endosc Surg Allied Technol; 1993 Feb; 1(1):36-9. PubMed ID: 8050008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems.
    Hadavand M; Mirbagheri A; Behzadipour S; Farahmand F
    Int J Med Robot; 2014 Jun; 10(2):129-39. PubMed ID: 23733681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Accelerated Finite-Time Convergent Neural Network for Visual Servoing of a Flexible Surgical Endoscope With Physical and RCM Constraints.
    Li W; Chiu PWY; Li Z
    IEEE Trans Neural Netw Learn Syst; 2020 Dec; 31(12):5272-5284. PubMed ID: 32011270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.