These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29052673)

  • 1. Ternary hybrid nanostructures of Au-CdS-ZnO grown via a solution-liquid-solid route using Au-ZnO catalysts.
    Flomin K; Diab M; Mokari T
    Nanoscale; 2017 Nov; 9(42):16138-16142. PubMed ID: 29052673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Ni-Au-ZnO ternary magnetic hybrid nanocrystals with enhanced photocatalytic activity.
    Zeng D; Chen Y; Wang Z; Wang J; Xie Q; Peng DL
    Nanoscale; 2015 Jul; 7(26):11371-8. PubMed ID: 26073646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation mechanisms of gold-zinc oxide hexagonal nanopyramids by heterogeneous nucleation using microwave synthesis.
    Herring NP; AbouZeid K; Mohamed MB; Pinsk J; El-Shall MS
    Langmuir; 2011 Dec; 27(24):15146-54. PubMed ID: 21819068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Colloidal Au on the Growth of ZnO Nanostructures.
    Güell F; Cabot A; Claramunt S; Moghaddam AO; Martínez-Alanis PR
    Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33805496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting.
    Wu M; Chen WJ; Shen YH; Huang FZ; Li CH; Li SK
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15052-60. PubMed ID: 25144940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced visible light photocatalytic performance of ZnO nanowires integrated with CdS and Ag2S.
    Chen C; Li Z; Lin H; Wang G; Liao J; Li M; Lv S; Li W
    Dalton Trans; 2016 Mar; 45(9):3750-8. PubMed ID: 26815888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of Au film thickness and annealing conditions on the VLS-assisted growth of ZnO nanostructures.
    Govatsi K; Chrissanthopoulos A; Dracopoulos V; Yannopoulos SN
    Nanotechnology; 2014 May; 25(21):215601. PubMed ID: 24784032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic hybrid Au/ZnO nanoparticles assembled through a one-pot method.
    Manna J; Vinod TP; Flomin K; Jelinek R
    J Colloid Interface Sci; 2015 Dec; 460():113-8. PubMed ID: 26319327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid materials of ZnO nanostructures with reduced graphene oxide and gold nanoparticles: enhanced photodegradation rates in relation to their composition and morphology.
    Bramhaiah K; Singh VN; John NS
    Phys Chem Chem Phys; 2016 Jan; 18(3):1478-86. PubMed ID: 26659334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties.
    Zeng D; Gong P; Chen Y; Zhang Q; Xie Q; Peng DL
    Nanoscale; 2016 Jun; 8(22):11602-10. PubMed ID: 27216552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation.
    Fang J; Xu L; Zhang Z; Yuan Y; Cao S; Wang Z; Yin L; Liao Y; Xue C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8088-92. PubMed ID: 23865712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion-Assisted Self-Growth of Au-Decorated ZnO Corn Silks and Their Photoelectrochemical Enhancement.
    Zhang Z; Choi M; Baek M; Deng Z; Yong K
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3967-3976. PubMed ID: 28067046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Au-ZnO hybrid nanoflowers, nanomultipods and nanopyramids: one-pot reaction synthesis and photocatalytic properties.
    Chen Y; Zeng D; Zhang K; Lu A; Wang L; Peng DL
    Nanoscale; 2014 Jan; 6(2):874-81. PubMed ID: 24270554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser irradiation-induced Au-ZnO nanospheres with enhanced sensitivity and stability for ethanol sensing.
    Zhang H; Wu S; Liu J; Cai Y; Liang C
    Phys Chem Chem Phys; 2016 Aug; 18(32):22503-8. PubMed ID: 27465699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of butterfly-like ZnO nanostructures and study of their self-reducing ability toward Au(3+) ions for enhanced photocatalytic efficiency.
    Song X; Liu Y; Zheng Y; Ding K; Nie S; Yang P
    Phys Chem Chem Phys; 2016 Feb; 18(6):4577-84. PubMed ID: 26795699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of Au@ZnO yolk-shell nanospheres with enhanced gas sensing properties.
    Li X; Zhou X; Guo H; Wang C; Liu J; Sun P; Liu F; Lu G
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18661-7. PubMed ID: 25290085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures.
    Borchers C; Müller S; Stichtenoth D; Schwen D; Ronning C
    J Phys Chem B; 2006 Feb; 110(4):1656-60. PubMed ID: 16471729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective growth of metal particles on ZnO nanopyramids via a one-pot synthesis.
    Flomin K; Jen-La Plante I; Moshofsky B; Diab M; Mokari T
    Nanoscale; 2014; 6(3):1335-9. PubMed ID: 24362921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real time observation of ZnO nanostructure formation via the solid-vapor and solid-solid-vapor mechanisms.
    Kim BJ; Kim MW; Jang JS; Stach EA
    Nanoscale; 2014 Jun; 6(12):6984-90. PubMed ID: 24837497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.