These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 29052930)
1. Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification. Nelson CE; Attia MA; Rogowski A; Morland C; Brumer H; Gardner JG Environ Microbiol; 2017 Dec; 19(12):5025-5039. PubMed ID: 29052930 [TBL] [Abstract][Full Text] [Related]
2. Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation. Attia M; Stepper J; Davies GJ; Brumer H FEBS J; 2016 May; 283(9):1701-19. PubMed ID: 26929175 [TBL] [Abstract][Full Text] [Related]
3. Systems analysis of the glycoside hydrolase family 18 enzymes from Monge EC; Tuveng TR; Vaaje-Kolstad G; Eijsink VGH; Gardner JG J Biol Chem; 2018 Mar; 293(10):3849-3859. PubMed ID: 29367339 [TBL] [Abstract][Full Text] [Related]
4. In vitro and in vivo characterization of three Attia MA; Nelson CE; Offen WA; Jain N; Davies GJ; Gardner JG; Brumer H Biotechnol Biofuels; 2018; 11():45. PubMed ID: 29467823 [TBL] [Abstract][Full Text] [Related]
5. Structural and enzymatic characterization of a glycoside hydrolase family 31 α-xylosidase from Cellvibrio japonicus involved in xyloglucan saccharification. Larsbrink J; Izumi A; Ibatullin FM; Nakhai A; Gilbert HJ; Davies GJ; Brumer H Biochem J; 2011 Jun; 436(3):567-80. PubMed ID: 21426303 [TBL] [Abstract][Full Text] [Related]
6. Trehalose Degradation by Cellvibrio japonicus Exhibits No Functional Redundancy and Is Solely Dependent on the Tre37A Enzyme. Garcia CA; Narrett JA; Gardner JG Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32917758 [TBL] [Abstract][Full Text] [Related]
7. New Family of Carbohydrate-Binding Modules Defined by a Galactosyl-Binding Protein Module from a Cellvibrio japonicus Endo-Xyloglucanase. Attia MA; Brumer H Appl Environ Microbiol; 2021 Feb; 87(5):e0263420. PubMed ID: 33355108 [TBL] [Abstract][Full Text] [Related]
8. Systems analysis in Cellvibrio japonicus resolves predicted redundancy of β-glucosidases and determines essential physiological functions. Nelson CE; Rogowski A; Morland C; Wilhide JA; Gilbert HJ; Gardner JG Mol Microbiol; 2017 Apr; 104(2):294-305. PubMed ID: 28118504 [TBL] [Abstract][Full Text] [Related]
9. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus. Gardner JG World J Microbiol Biotechnol; 2016 Jul; 32(7):121. PubMed ID: 27263016 [TBL] [Abstract][Full Text] [Related]
10. A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus. Larsbrink J; Thompson AJ; Lundqvist M; Gardner JG; Davies GJ; Brumer H Mol Microbiol; 2014 Oct; 94(2):418-33. PubMed ID: 25171165 [TBL] [Abstract][Full Text] [Related]
11. Genomic and transcriptomic analysis of carbohydrate utilization by Paenibacillus sp. JDR-2: systems for bioprocessing plant polysaccharides. Sawhney N; Crooks C; Chow V; Preston JF; St John FJ BMC Genomics; 2016 Feb; 17():131. PubMed ID: 26912334 [TBL] [Abstract][Full Text] [Related]
12. NMR spectroscopic analysis reveals extensive binding interactions of complex xyloglucan oligosaccharides with the Cellvibrio japonicus glycoside hydrolase family 31 α-xylosidase. Silipo A; Larsbrink J; Marchetti R; Lanzetta R; Brumer H; Molinaro A Chemistry; 2012 Oct; 18(42):13395-404. PubMed ID: 22961810 [TBL] [Abstract][Full Text] [Related]
13. Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. DeBoy RT; Mongodin EF; Fouts DE; Tailford LE; Khouri H; Emerson JB; Mohamoud Y; Watkins K; Henrissat B; Gilbert HJ; Nelson KE J Bacteriol; 2008 Aug; 190(15):5455-63. PubMed ID: 18556790 [TBL] [Abstract][Full Text] [Related]
14. Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction. Conway JM; McKinley BS; Seals NL; Hernandez D; Khatibi PA; Poudel S; Giannone RJ; Hettich RL; Williams-Rhaesa AM; Lipscomb GL; Adams MWW; Kelly RM Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986379 [TBL] [Abstract][Full Text] [Related]
15. The complex physiology of Cellvibrio japonicus xylan degradation relies on a single cytoplasmic β-xylosidase for xylo-oligosaccharide utilization. Blake AD; Beri NR; Guttman HS; Cheng R; Gardner JG Mol Microbiol; 2018 Mar; 107(5):610-622. PubMed ID: 29266479 [TBL] [Abstract][Full Text] [Related]
16. Characterization of an alkali-stable xyloglucanase/mixed-linkage β-glucanase Pgl5A from Paenibacillus sp. S09. Cheng R; Cheng L; Wang L; Fu R; Sun X; Li J; Wang S; Zhang J Int J Biol Macromol; 2019 Nov; 140():1158-1166. PubMed ID: 31465806 [TBL] [Abstract][Full Text] [Related]
17. Conversion of the free Cellvibrio japonicus xyloglucan degradation system to the cellulosomal mode. Vanderstraeten J; Lamote B; da Fonseca MJM; De Groote P; Briers Y Appl Microbiol Biotechnol; 2022 Sep; 106(17):5495-5509. PubMed ID: 35869373 [TBL] [Abstract][Full Text] [Related]
18. Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31. Larsbrink J; Izumi A; Hemsworth GR; Davies GJ; Brumer H J Biol Chem; 2012 Dec; 287(52):43288-99. PubMed ID: 23132856 [TBL] [Abstract][Full Text] [Related]
19. Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut Déjean G; Tamura K; Cabrera A; Jain N; Pudlo NA; Pereira G; Viborg AH; Van Petegem F; Martens EC; Brumer H mBio; 2020 Apr; 11(2):. PubMed ID: 32265336 [TBL] [Abstract][Full Text] [Related]
20. Genetic and enzymatic characterization of Amy13E from Mascelli GM; Garcia CA; Gardner JG Appl Environ Microbiol; 2024 Jan; 90(1):e0152123. PubMed ID: 38084944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]